Volume 10, Issue 1 (2019)                   JMBS 2019, 10(1): 151-157 | Back to browse issues page

XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Shojaei F, Homaei A, Taherizadeh M, Kamrani E. Enhancing Activity and Stability of Penaeus vannamei Protease against Heavy Metal Poisoning via immobilization on Chitosan Nanoparticles. JMBS 2019; 10 (1) :151-157
URL: http://biot.modares.ac.ir/article-22-15621-en.html
1- Marine Biology Department, Marine Science & Technology Faculty, Hormozgan University, Bandar
2- Biochemistry Department, Science Faculty, Hormozgan University, Bandar Abbas, Iran, Biochemistry Department, Science Faculty, Hormozgan University, Bandar Abbas, Iran. Postal Code: 7916193145 , a.homaei@hormozgan.ac.ir
3- Marine Biology Department, Marine Science & Technology Faculty, Hormozgan University, Bandar Abbas, Iran.
Abstract:   (7372 Views)
Enzymes of marine organisms are ideal candidates for biomonitoring of pollution in marine environments. For the widespread use of enzymes in industrial processes, carried out under certain physico-chemical conditions, their stability must be improved. In this study, for the first time, chitosan nanoparticles were used as matrices for augmenting the stability of Penaeus vannamei (Whiteleg shrimp)-derived purified proteases against metallic ions. For the electrostatic binding of the enzyme to the chitosan nanoparticles, the protein solution at a concentration of 7mg/ml was added to the nanoparticles, and incubated for 4 hours at 10°C. After 3 times rinsing with phosphate buffer of pH=7.5, the nano-enzyme was dissolved in 1ml phosphate buffer, and used for further studies. The results of this study showed that Fe2+ and Mn2+ significantly increased the enzyme activity, whereas a strong inhibitory effect was observed in the presence of Cd2+, Hg2+, Co2+, Ni2+, Cu2+ and Zn2+, and a weak inhibitory effect in the presence of Na+ and K+. The immobilized enzyme exhibited greater resistance to metal ions than its free counterpart. The free enzyme was susceptible to the presence of metal ions, and with the increment of their concentrations, enzyme activity declines. From this nexus, it could be inferred that the high stability of immobilized enzyme is due to the presence of chitosan nanoparticles. Stability retention of the immobilized enzyme at high concentrations of metal ions indicates the efficacy and utility of the immobilization method in industrial enzyme technology.
Full-Text [PDF 640 kb]   (3721 Downloads)    
Article Type: Research Paper | Subject: Agricultural Biotechnology
Received: 2017/07/19 | Accepted: 2018/01/13 | Published: 2019/03/16

References
1. Sila A, Nasir R, Bougatef A, Nasri M. Digestive alkaline proteases from the goby (Zosterisessor ophiocephalus): Characterization and potential application as detergent additive and in the deproteinization of shrimp wastes. J Aquat Food Prod Technol. 2012;21:118-33. [Link] [DOI:10.1080/10498850.2011.587149]
2. Zeinali F, Homaei A, Kamrani E. Sources of marine superoxide dismutases: Characteristics and applications. Int J Biol Macromol. 2015;79:627-37. [Link] [DOI:10.1016/j.ijbiomac.2015.05.053]
3. Dadshahi Z, Homaei A, Zeinali F, Sajedi RH, Khajeh K. Extraction and purification of a highly thermostable alkaline caseinolytic protease from wastes Penaeus vannamei suitable for food and detergent industries. Food Chem. 2016;202:110-5. [Link] [DOI:10.1016/j.foodchem.2016.01.104]
4. Meireles A, Borges A, Giaouris E, Simões M. The current knowledge on the application of anti-biofilm enzymes in the food industry. Food Res Int. 2016;86:140-6. [Link] [DOI:10.1016/j.foodres.2016.06.006]
5. Choi JM, Han SS, Kim HS. Industrial applications of enzyme biocatalysis: Current status and future aspects. Biotechnol Adv. 2015;33(7):1443-54. [Link] [DOI:10.1016/j.biotechadv.2015.02.014]
6. Klomklao S. Digestive proteinases from marine organisms and their applications. Songklanakarin J Sci Technol. 2008;30(1):37-46. [Link]
7. Chakraborty S, Bhattacharya T, Singh G, Maity JP. Benthic macroalgae as biological indicators of heavy metal pollution in the marine environments: A biomonitoring approach for pollution assessment. Ecotoxicol Environ Saf. 2014;100:61-8. [Link] [DOI:10.1016/j.ecoenv.2013.12.003]
8. Karunakaran C, Madasamy T, Sethy NK. Enzymatic biosensors. In: Karunakaran C, Bhargava K, Benjamin R, editors. Biosensors and bioelectronics. Amsterdam: Elsevier; 2015. pp. 133-204. [Link] [DOI:10.1016/B978-0-12-803100-1.00003-7]
9. Iyer PV, Ananthanarayan L. Enzyme stability and stabilization - aqueous and non-aqueous environment. Process Biochem. 2008;43(10):1019-32. [Link] [DOI:10.1016/j.procbio.2008.06.004]
10. Homaei A, Etemadipour R. Improving the activity and stability of actinidin by immobilization on gold nanorods. Int J Biol Macromol. 2015;72:1176-81. [Link] [DOI:10.1016/j.ijbiomac.2014.10.029]
11. Homaei A, Saberi D. Immobilization of α-amylase on gold nanorods: An ideal system for starch processing. Process Biochem. 2015;50(9):1394-9. [Link] [DOI:10.1016/j.procbio.2015.06.002]
12. Xiaoyan Z, Yuanyuan J, Zaijun L, Zhiguo G, Guangli W. Improved activity and thermo-stability of the horse radish peroxidase with graphene quantum dots and its application in fluorometric detection of hydrogen peroxide. Spectrochim Acta A Mol Biomol Spectrosc. 2016;165:106-13. [Link] [DOI:10.1016/j.saa.2016.03.049]
13. Ezhil Vilian AT, Mani V, Chen SM, Dinesh B, Huang ST. The immobilization of glucose oxidase at manganese dioxide particles-decorated reduced graphene oxide sheets for the fabrication of a glucose biosensor. Ind Eng Chem Res. 2014;53(40):15582-9. [Link] [DOI:10.1021/ie502430d]
14. Silva MF, Rigo D, Mossi V, Dallago RM, Henrick P, Kuhn GDO, et al. Evaluation of enzymatic activity of commercial inulinase from Aspergillus niger immobilized in polyurethane foam. Food Bioprod Process. 2013;91(1):54-9. [Link] [DOI:10.1016/j.fbp.2012.08.003]
15. Datta S, Rene Christena L, Sriramulu Rajaram YR. Enzyme immobilization: An overview on techniques and support materials. 3 Biotech. 2013;3(1):1-9. [Link] [DOI:10.1007/s13205-012-0071-7]
16. Tischer W, Wedekind F. Immobilized enzymes: Methods and applications. In: Fessner WD, Archelas A, Demirjian DC, Furstoss R, Griengl H, Jaeger KE, et al, editors. Biocatalysis - from discovery to application, topics in current chemistry. 200th Volume. Berlin/Heidelberg: Springer; 1999. pp. 95-126. [Link] [DOI:10.1007/3-540-68116-7_4]
17. Tripathi P, Kumari A, Rath P, Kayastha AM. Immobilization of α-amylase from mung beans (Vigna radiata) on Amberlite MB 150 and chitosan beads: A comparative study. J Mol Catal B Enzym. 2007;49(1-4):69-74. [Link] [DOI:10.1016/j.molcatb.2007.08.011]
18. Acevedo F, Pizzul L, Castillo MD, González ME, Cea M, Gianfreda L, et al. Degradation of polycyclic aromatic hydrocarbons by free and nanoclay-immobilized manganese peroxidase from Anthracophyllum discolor. Chemosphere. 2010;80(3):271-8. [Link] [DOI:10.1016/j.chemosphere.2010.04.022]
19. Wu L, Yuan X, Sheng J. Immobilization of cellulase in nanofibrous PVA membranes by electrospinning. J Membr Sci. 2005;250(1-2):167-73. [Link] [DOI:10.1016/j.memsci.2004.10.024]
20. Luckarift HR, Spain JC, Naik RR, Stone MO. Enzyme immobilization in a biomimetic silica support. Nat Biotechnol. 2004;22(2):211-3. [Link] [DOI:10.1038/nbt931]
21. Kurita K. Chitin and chitosan: Functional biopolymers from marine crustaceans. Mar Biotechnol (NY). 2006;8(3):203-26. [Link] [DOI:10.1007/s10126-005-0097-5]
22. Kumari A, Kayastha AM. Immobilization of soybean (Glycine max) α-amylase onto Chitosan and Amberlite MB-150 beads: Optimization and characterization. J Mol Catal B Enzym. 2011;69(1-2):8-14. [Link] [DOI:10.1016/j.molcatb.2010.12.003]
23. Dutta PK, Dutta J, Tripathi VS. Chitin and chitosan: Chemistry, properties and applications. J Sci Ind Res. 2004;63:20-31. [Link]
24. Krajewska B. Application of chitin- and chitosan-based materials for enzyme immobilizations: A review. Enzyme Microb Technol. 2004;35(2-3):126-39. [Link] [DOI:10.1016/j.enzmictec.2003.12.013]
25. Hu B, Pan C, Sun Y, Hou Z, Ye H, Zeng X. Optimization of fabrication parameters to produce chitosan-tripolyphosphate nanoparticles for delivery of tea catechins. J Agric Food Chem. 2008;56(16):7451-8. [Link] [DOI:10.1021/jf801111c]
26. Liu DM, Chen J, Shi YP. α-Glucosidase immobilization on chitosan-enriched magnetic composites for enzyme inhibitors screening. Int J Biol Macromol. 2017;105(Pt 1):308-16. [Link] [DOI:10.1016/j.ijbiomac.2017.07.045]
27. Singh RS, Singh RP, Kennedy JF. Immobilization of yeast inulinase on chitosan beads for the hydrolysis of inulin in a batch system. Int J Biol Macromol. 2017;95:87-93. [Link] [DOI:10.1016/j.ijbiomac.2016.11.030]
28. Sojitra UV, Nadar SS, Rathod VK. Immobilization of pectinase onto chitosan magnetic nanoparticles by macromolecular cross-linker. Carbohydr Polym. 2017;157:677-85. [Link] [DOI:10.1016/j.carbpol.2016.10.018]
29. Jaiswal N, Pandey VP, Dwivedi UN. Immobilization of papaya laccase in chitosan led to improved multipronged stability and dye discoloration. Int J Biol Macromol. 2016;86:288-95. [Link] [DOI:10.1016/j.ijbiomac.2016.01.079]
30. Facin BR, Moret B, Baretta D, Belfiore LA, Paulino AT. Immobilization and controlled release of β-galactosidase from chitosan-grafted hydrogels. Food Chem. 2015;179:44-51. [Link] [DOI:10.1016/j.foodchem.2015.01.088]
31. Kuo CH, Liu YC, Chang CMJ, Chen JH, Chang C, Shieh CJ. Optimum conditions for lipase immobilization on chitosan-coated Fe3O4 nanoparticles. Carbohydr Polym. 2012;87(4):2538-45. [Link] [DOI:10.1016/j.carbpol.2011.11.026]
32. Homaei AA, Sajedi RH, Sariri R, Seyfzadeh S, Stevanato R. Cysteine enhances activity and stability of immobilized papain. Amino Acids. 2010;38(3):937-42. [Link] [DOI:10.1007/s00726-009-0302-3]
33. Homaei A, Barkheh H, Sariri R, Stevanato R. Immobilized papain on gold nanorods as heterogeneous biocatalysts. Amino Acids. 2014;46(7):1649-57. [Link] [DOI:10.1007/s00726-014-1724-0]
34. Homaei A. Immobilization of Penaeus merguiensis alkaline phosphatase on gold nanorods for heavy metal detection. Ecotoxicol Environ Saf. 2017;136:1-7. [Link] [DOI:10.1016/j.ecoenv.2016.10.023]
35. Riordan JF. The role of metals in enzyme activity. Ann Clin Lab Sci. 1977;7(2):119-29. [Link]
36. Nguyen DH. What is the relationship between environmental conditions & enzyme function?. In: Hearst Seattle Media, LLC. 2016. [Link]
37. Chandran R, Sivakumar AA, Mohandass S, Aruchami M. Effect of cadmium and zinc on antioxidant enzyme activity in the gastropod, Achatina fulica. Comp Biochem Physiol C Toxicol Pharmacol. 2005;140(3-4):422-6. [Link] [DOI:10.1016/j.cca.2005.04.007]
38. Homaei A. Purification and biochemical properties of highly efficient alkaline phosphatase from Fenneropenaeus merguiensis brain. J Mol Catal B Enzym. 2015;118:16-22. [Link] [DOI:10.1016/j.molcatb.2015.04.013]
39. Zamani A, Rezaei M, Madani R. In-vitro effects of biochemical factors on trypsin activity from intestine and pyloric caeca of common kilka (Clupeonella cultriventris caspia) for inhibition of belly bursting. Iran Sci Fish J. 2012;20(4):53-62. [Persian] [Link]
40. Khajavi M, Zamani A, Oujifard A. The study of in-vitro effect of some chemical factors on enzymes activity of trypsin and chymotrypsin in rainbow trout (Oncorhynchus mykiss) fry. Bahrehbardari va Parvaresh Abziyan. 2015;4(1):93-108. [Persian] [Link]
41. Bezerra RS, Lins EJF, Alencar RB, Paiva PMG, Chaves MEC, Coelho LCBB, et al. Alkaline proteinase from intestine of Nile tilapia (Oreochromis niloticus). Process Biochem. 2005;40(5):1829-34. [Link] [DOI:10.1016/j.procbio.2004.06.066]
42. Glusker JP, Katz AK, Bock CW. Metal ions in biological systems. Rigaku J. 1999;16(2):8-17. [Link]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.