Volume 10, Issue 3 (2019)                   JMBS 2019, 10(3): 373-380 | Back to browse issues page

XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Abedi Mohtasab T, Tamjid E, Haji-Hosseini R. A Study on Biofilm Formation, Antibacterial Properties and Cell Viability of Poly (ε-Caprolactone)-Based Electrospun Nanofibrous Scaffold. JMBS 2019; 10 (3) :373-380
URL: http://biot.modares.ac.ir/article-22-23705-en.html
1- Micribial Biotechnology Department, Basic Sciences Faculty, Payame Noor University, Tehran, Iran
2- Nanobiotechnology Department, Biological Sciences Faculty, Tarbiat Modares University, Tehran, Iran, Tarbiat Modares University, Nasr Bridge, Jalal-Al-Ahmad Highway, Tehran, Iran. , tamjid@modares.ac.ir
3- Biochemistry Department, Basic Sciences Faculty, Payame Noor University, Tehran, Iran
Abstract:   (7384 Views)

Aims: Recently, polymer-based nanofibrous scaffolds have attracted great attention due to their significant antibacterial properties in the field of dermatological applications. In this study, a polycaprolactone-based nanofibrous scaffold has been fabricated using the electrospinning method. The aim of this study was to evaluate the antibacterial effect of electrospun nanofibrous structures. Materials and Methods: In this experimental study, the structure and bacterial attachment on polymeric nanofibrous scaffolds were studied by Scanning Electron Microscopy (SEM). In addition, antibacterial properties of nanofibrous scaffolds were studied on two gram-negative bacteria of Escherichia coli and Pseudomonas aeruginosa and two gram-positive bacteria of Staphylococcus aureus and Streptococcus mutans, using microdilution method and biofilm assay. Moreover, MTT assay was performed on HeLa and human fibrosarcoma cell line (HT1080) cancerous cell lines to evaluate the cell viability.
Findings: The results of this study showed that nanofibrous scaffold revealed a significant antimicrobial and anti-biofilm formation effect on all of the studied bacterial strains, but in microscopic observations and microdilution assay was observed on Pseudomonas aeruginosa in 1mg/ml of nanofibrous scaffold extract concentration, while the major effect in biofilm assay was observed in 8µg/ml of extract concentration. Moreover, the cell viability studies showed that the most significant effect was shown on HT1080 cell line which has drastically decreased by 40% after 48 hours in comparison with the control.
Conclusion: These results show that electrospun nanofibrous PCL-based scaffolds are potentially promising for dermal tissue engineering applications, due to anti-biofilm effects and capability of reducing the number of cancerous cells in the wound site.

Full-Text [PDF 1135 kb]   (3994 Downloads)    
Article Type: Original Research | Subject: Pharmaceutical Biotechnology
Received: 2018/08/1 | Accepted: 2018/07/5 | Published: 2019/09/21

References
1. Holland TA, Mikos, AG. Biodegradable polymeric scaffolds. Improvements in bone tissue engineering through controlled drug delivery. In: Scheper T, Lee K, Kaplan D, editors. Tissue engineering I. Berlin, Heidelberg: Springer; 2006. p. 161-85. [Link] [DOI:10.1007/b137205]
2. Mahdavi Shahri N, Shahabipour F, Moghaddam Matin M, Tavassoli A, Fereidooni M, Moghimi A, et al. Preparation of natural 3D scaffolds for tissue engineering studies. 16th National Conference and 4th International Conference on Biology of Iran; 2010 Sep 14-16; Ferdowsi University of Mashhad - Iranian Association for Biology, Mashhad, Iran. [Persian] [Link]
3. Chen L, Bai Y, Liao G, Peng E, Wu B, Wang Y, Xie X. Electrospun poly (L-lactide)/poly (ε-caprolactone) blend nanofibrous scaffold: characterization and biocompatibility with human adipose-derived stem cells. PLoS One. 2013;26;8(8):e71265. [Link] [DOI:10.1371/journal.pone.0071265]
4. Xu CY, Inai R, Kotaki M, Ramakrishna S. Aligned biodegradable nanofibrous structure: a potential scaffold for blood vessel engineering. Biomaterials. 2004;25(5):877-86. [Link] [DOI:10.1016/S0142-9612(03)00593-3]
5. Kim CH, Khil MS, Kim HY, Lee HU, Jahng KY. An improved hydrophilicity via electrospinning for enhanced cell attachment and proliferation. J Biomed Mater Res Part B Appl Biomater. 2006;78(2):283-90. [Link] [DOI:10.1002/jbm.b.30484]
6. Shokrollahi P, Mehmanchi M, Atai M, Omidian H, Shokrolahi F. Effect of interface on mechanical properties and biodegradation of PCL HAp supramolecular nano-composites. J Mater Sci Mater Med. 2014;25(1):23-35. [Link] [DOI:10.1007/s10856-013-5039-6]
7. Atyabi SM, Sharifi F, Irani S, Zandi M, Mivehchi H, Nagheh Z. Cell attachment and viability study of PCL nano-fiber modified by cold atmospheric plasma. Cell Biochem Biophys. 2016;74(2):181-90. [Link] [DOI:10.1007/s12013-015-0718-1]
8. García-González CA, Barros J, Rey-Rico A, Redondo P, Gómez-Amoza JL, Concheiro A, et al. Antimicrobial properties and osteogenicity of vancomycin-loaded synthetic scaffolds obtained by supercritical foaming. ACS Appl Mater Interfaces. 2018;10(4):3349-60. [Link] [DOI:10.1021/acsami.7b17375]
9. Pförringer D, Obermeier A, Kiokekli M, Büchner H, Vogt S, Stemberger A, et al. Antimicrobial formulations of absorbable bone substitute materials as drug carriers based on calcium sulfate. Antimicrob Agents Chemother. 2016;60(7):3897-905. [Link] [DOI:10.1128/AAC.00080-16]
10. Mouriño V, Boccaccini AR. Bone tissue engineering therapeutics: controlled drug delivery in three-dimensional scaffolds. J R Soc Interface. 2010;7(43):209-27. [Link] [DOI:10.1098/rsif.2009.0379]
11. Bala Balakrishnan P, Gardella L, Forouharshad M, Pellegrino T, Monticelli O. Star poly (ε-caprolactone)-based electrospun fibers as biocompatible scaffold for doxorubicin with prolonged drug release activity. Colloids Surf B Biointerfaces. 2018;161:488-96. [Link] [DOI:10.1016/j.colsurfb.2017.11.014]
12. Saffari M, Jokar M, Shajary GR, Piroozmand A, Mousavi GA. Minimum inhibitory concentration of vancomycin in Staphylococcus aureus isolates collected from clinical samples of Shahid Beheshti hospital, kashan during 2009. Feyz J Kashan Univ Med Sci. 2010;14(3):234-41. [Persian] [Link]
13. Graham DR, Dixon RE, Hughes JM, Thornsberry C. Disk diffusion antimicrobial susceptibility testing for clinical and epidemiologic purposes. Am J Infec Control. 1985;13(6):241-9. [Link] [DOI:10.1016/0196-6553(85)90024-0]
14. Luber P, Bartelt E, Genschow E, Wagner J, Hahn H. Comparison of broth microdilution, E test, and agar dilution methods for antibiotic susceptibility testing of Campylobacter jejuni and Campylobacter coli. J Clin Microbiol. 2003;41(3);1062-8. [Link] [DOI:10.1128/JCM.41.3.1062-1068.2003]
15. Sabaeifard P, Abdi-Ali A, Soudi MR, Dinarvand R. Optimization of tetrazolium salt assay for Pseudomonas aeruginosa biofilm using microtiter plate method. J Microbiol Methods. 2014;105:134-40. [Link] [DOI:10.1016/j.mimet.2014.07.024]
16. Van Meerloo J, Kaspers GJ, Cloos J. Cell sensitivity assays: the MTT assay. Methods Mol Biol. 2011;731:237-45. [Link] [DOI:10.1007/978-1-61779-080-5_20]
17. Ruckh TT, Oldinski RA, Carroll DA, Mikhova K, Bryers JD, Popat KC. Antimicrobial effects of nanofiber poly (caprolactone) tissue scaffolds releasing rifampicin. J Mater Sci Mater Med. 2012;23(6):1411-20. [Link] [DOI:10.1007/s10856-012-4609-3]
18. Hassan MI, Sultana N. Characterization, drug loading and antibacterial activity of nanohydroxyapatite/polycaprolactone (nHA/PCL) electrospun membrane. 3 Biotech. 2017;7(4):249. [Link] [DOI:10.1007/s13205-017-0889-0]
19. Cerca N, Pier GB, Vilanova M, Oliveira R, Azeredo J. Quantitative analysis of adhesion and biofilm formation on hydrophilic and hydrophobic surfaces of clinical isolates of Staphylococcus epidermidis. Res Microbiol. 2005;156(4):506-14. [Link] [DOI:10.1016/j.resmic.2005.01.007]
20. Ali Mirani Z, Fatima A, Urooj S, Aziz M, Khan M, Abbas T. Relationship of cell surface hydrophobicity with biofilm formation and growth rate: A study on Pseudomonas aeruginosa, Staphylococcus aureus, and Escherichia coli. Iran J Basic Med Sci. 2018;21(7):760-9. [Link]
21. Sun L, Lu J, Wang Q, Liu Y, Han F, Yang Y, et al. [Effects of selenium compounds on proliferation, migration and adhesion of HeLa cells]. Wei Sheng Yan Jiu. 2015;44(2):276-8. [Link]
22. Luo H, Wang F, Bai Y, Chen T, Zheng W. Selenium nanoparticles inhibit the growth of HeLa and MDA-MB-231 cells through induction of S phase arrest. Colloids Surf B Biointerfaces. 2012;94:304-8. [Link] [DOI:10.1016/j.colsurfb.2012.02.006]
23. Palizban AA, Sadeghi-Aliabadi H, Abdollahpour F. Effect of cerium lanthanide on Hela and MCF-7 cancer cell growth in the presence of transferring. Res Pharm Sci. 2010;5(2):119-25. [Link]
24. Sadeghi-Aliabadi H, Minaiyan M, Dabestan A. Cytotoxic evaluation of doxorubicin in combination with simvastatin against human cancer cells. Res Pharm Sci. 2010;5(2):127-33. [Link]
25. Masters JR. HeLa cells 50 years on: The good, the bad and the ugly. Nat Rev Cancer. 2002;2(4):315-9. [Link] [DOI:10.1038/nrc775]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.