Volume 10, Issue 3 (2019)                   JMBS 2019, 10(3): 511-518 | Back to browse issues page

XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Panahi A, Vaseghi A. Horizontal transfer analysis of type III secretion system (T3SS) genes in several types of Pseudomonas bacteria using Seqword software. JMBS 2019; 10 (3) :511-518
URL: http://biot.modares.ac.ir/article-22-28601-en.html
1- Biology Department, Science Faculty, University of Mohaghegh Ardabili, Ardabil, Iran, Biology Department, Science Faculty, University of Mohaghegh Ardabili, Daneshgah Street, Ardabil, Iran. , arpanahi@uma.ac.ir
2- Nanobiotechnology Department, Biological Sciences Faculty, Tarbiat Modares University, Tehran, Iran
Abstract:   (4188 Views)
All bacteria have many different secretion systems to transfer of their macromolecules to out. Currently, seven secretion systems have been identified. Transfer, tracing, and horizontal transmission of this gene groups, are many important in our understanding about these gene's application in bacteria and other substances. In this study, we examined Type III secretion system (T3SS) genes in Pseudomonas with using the bioinformatics software such as SeqWord Genome Browser in some databases for instants, ACLAME, Mobil Elements Genetic (MGEs), and PAthogenicity Islands Data Base (PAIDB). The results indicated that the T3SS genes transfers are observed with the percentage between 30% and 100%. Our findings also show the P. fluorescens bacterium has the most species with 15 transmitted genes. Bioinformatics predictors showed P. fluorescens F113 subtype with 11 genes had the highest transferability of T3SS cluster genes. The bacteria species such P. Fluorescens Pf-5, P. syringae pv. Glycinea, P. syringae pv. Aptata, P. syringae pv. Japonica, P. syringae pv. Pisi, P. aeruginosa UCBPP-PA14 show up about 100% of horizontal transfer from T3SS. Our results also indicated that T3SS, which are important in the bacteria disease, have the highest transmission rates. This study indicates can be showing the systematic transmission of disease from host and pathogen during the evolution.
Full-Text [PDF 923 kb]   (3355 Downloads)    
Article Type: Original Research | Subject: Bioinformatics
Received: 2018/12/25 | Accepted: 2019/03/13 | Published: 2019/09/1

References
1. Avery OT, MacLeod CM, McCarty M. Studies on the chemical nature of the substance inducing transformation of Pneumococcal types: Induction of transformation by a desoxyribonucleic acid fraction isolated from Pneumococcus type III. J Exp Med. 1944;79(2):137-58. [Link] [DOI:10.1084/jem.79.2.137]
2. Coburn B, Sekirov I, Finlay BB. Type III secretion systems and disease. Clin Microbiol Rev. 2007;20(4):535-49. [Link] [DOI:10.1128/CMR.00013-07]
3. Alto NM, Shao F, Lazar CS, Brost RL, Chua G, Mattoo S, et al. Identification of a bacterial type III effector family with G protein mimicry functions. Cell. 2006;124(1):133-45. [Link] [DOI:10.1016/j.cell.2005.10.031]
4. Gallois A, Klein JR, Allen LA, Jones BD, Nauseef WM. Salmonella pathogenicity island 2-encoded type III secretion system mediates exclusion of NADPH oxidase assembly from the phagosomal membrane. J Immunol. 2001;166(9):5741-8. [Link] [DOI:10.4049/jimmunol.166.9.5741]
5. McDaniel TK, Kaper JB. A cloned pathogenicity island from enteropathogenic Escherichia coli confers the attaching and effacing phenotype on E. coli K‐12. Mol Microbiol. 1997;23(2):399-407. [Link] [DOI:10.1046/j.1365-2958.1997.2311591.x]
6. Ghosh P. Process of protein transport by the type III secretion system. Microbiol Mol Biol Rev. 2004;68(4):771-95. [Link] [DOI:10.1128/MMBR.68.4.771-795.2004]
7. Xiao Y, Lan L, Yin C, Deng X, Baker D, Zhou JM, et al. Two-component sensor RhpS promotes induction of Pseudomonas syringae type III secretion system by repressing negative regulator RhpR. Mol Plant Microbe Interact. 2007;20(3):223-34. [Link] [DOI:10.1094/MPMI-20-3-0223]
8. OECD. Safety assessment of transgenic organisms: OECD consensus documents. 3. Paris: OECD; 2010. pp. 171-4. [Link]
9. Andam CP, Gogarten JP. Biased gene transfer in microbial evolution. Nat Rev Microbiol. 2011;9(7):543-55. [Link] [DOI:10.1038/nrmicro2593]
10. Hirt RP, Alsmark C, Embley TM. Lateral gene transfers and the origins of the eukaryote proteome: A view from microbial parasites. Curr Opin Microbiol. 2015;23:155-62. [Link] [DOI:10.1016/j.mib.2014.11.018]
11. Keeling PJ, Palmer JD. Horizontal gene transfer in eukaryotic evolution. Nat Rev Genet. 2008;9(8):605-18. [Link] [DOI:10.1038/nrg2386]
12. Vernikos GS, Parkhill J. Interpolated variable order motifs for identification of horizontally acquired DNA: Revisiting the Salmonella pathogenicity islands. Bioinformatics. 2006;22(18):2196-203. [Link] [DOI:10.1093/bioinformatics/btl369]
13. Garcia-Vallvé S, Romeu A, Palau J. Horizontal gene transfer in bacterial and archaeal complete genomes. Genome Res. 2000;10(11):1719-25. [Link] [DOI:10.1101/gr.130000]
14. Tsirigos A, Rigoutsos I. A new computational method for the detection of horizontal gene transfer events. Nucleic Acids Res. 2005;33(3):922-33. [Link] [DOI:10.1093/nar/gki187]
15. Langille MG, Brinkman FS. Bioinformatic detection of horizontally transferred DNA in bacterial genomes. F1000 Biol Rep. 2009;1:25. [Link] [DOI:10.3410/B1-25]
16. Adato O, Ninyo N, Gophna U, Snir S. Detecting horizontal gene transfer between closely related taxa. PLoS Comput Biol. 2015;11(10):e1004408. [Link] [DOI:10.1371/journal.pcbi.1004408]
17. Ochi K. Comparative ribosomal protein sequence analyses of a phylogenetically defined genus, Pseudomonas, and its relatives. Int J Syst Bacteriol. 1995;45(2):268-73. [Link] [DOI:10.1099/00207713-45-2-268]
18. Ashton Acton Q, editor. Pseudomonas aeruginosa: New insights for the healthcare professional. Atlanta: Scholarly Editions; 2013. pp. 11-32. [Link]
19. Quinn PJ, Markey BK, Leonard FC, Hartigan P, Fanning S, Fitzpatrick ES. Veterinary, microbiology and microbial disease. 2nd Edition. Hoboken: John Wiley & Sons; 2011. pp. 225-43. [Link]
20. Hauser AR. The type III secretion system of Pseudomonas aeruginosa: Infection by injection. Nat Rev Microbiol. 2009;7(9):654-65. [Link] [DOI:10.1038/nrmicro2199]
21. Hwang MS, Morgan RL, Sarkar SF, Wang PW, Guttman DS. Phylogenetic characterization of virulence and resistance phenotypes of Pseudomonas syringae. Appl Environ Microbiol. 2005;71(9):5182-91. [Link] [DOI:10.1128/AEM.71.9.5182-5191.2005]
22. Fatmi MB, Collmer A, Iacobellis NS, Mansfield JW, Murillo J, Schaad NW, et al, editors. Pseudomonas syringae pathovars and related pathogens-identification, epidemiology, and genomics. Berlin: Springer Science & Business Media; 2008. pp. 420-30. [Link] [DOI:10.1007/978-1-4020-6901-7]
23. Bezuidt O, Lima-Mendez G, Reva ON. SeqWord Gene Island Sniffer: A program to study the lateral genetic exchange among bacteria. World Acad Sci Eng Technol. 2009;3(10):2399-404. [Link]
24. Reva ON, Tümmler B. Global features of sequences of bacterial chromosomes, plasmids and phages revealed by analysis of oligonucleotide usage patterns. BMC Bioinform. 2004;5(1):90. [Link] [DOI:10.1186/1471-2105-5-90]
25. Ganesan H, Rakitianskaia AS, Davenport CF, Tümmler B, Reva ON. The SeqWord Genome Browser: An online tool for the identification and visualization of atypical regions of bacterial genomes through oligonucleotide usage. BMC Bioinform. 2008;9(1):333. [Link] [DOI:10.1186/1471-2105-9-333]
26. Syvanen M. Horizontal gene transfer: Evidence and possible consequences. Annu Rev Genet. 1994;28(1):237-61. [Link] [DOI:10.1146/annurev.ge.28.120194.001321]
27. Ochman H, Lawrence JG, Groisman EA. Lateral gene transfer and the nature of bacterial innovation. Nature. 2000;405(6784):299-304. [Link] [DOI:10.1038/35012500]
28. Yoon SH, Hur CG, Kang HY, Kim YH, Oh TK, Kim JF. A computational approach for identifying pathogenicity islands in prokaryotic genomes. BMC Bioinform. 2005;6(1):184. [Link] [DOI:10.1186/1471-2105-6-184]
29. Qiu X, Kulasekara BR, Lory S. Role of horizontal gene transfer in the evolution of Pseudomonas aeruginosa virulence. In: De Reuse H, Bereswill S, editors. Microbial pathogenomics. 6th Volume. Basel: Karger Publishers; 2009. pp. 126-39. [Link] [DOI:10.1159/000235767]
30. Zhu Q, Kosoy M, Dittmar K. HGTector: An automated method facilitating genome-wide discovery of putative horizontal gene transfers. BMC Genom. 2014;15(1):717. [Link] [DOI:10.1186/1471-2164-15-717]
31. Nguyen M, Ekstrom A, Li X, Yin Y. HGT-Finder: A new tool for horizontal gene transfer finding and application to Aspergillus genomes. Toxins. 2015;7(10):4035-53. [Link] [DOI:10.3390/toxins7104035]
32. Boc A, Diallo AB, Makarenkov V. T-REX: A web server for inferring, validating and visualizing phylogenetic trees and networks. Nucleic Acids Res. 2012;40(W1):W573-9. [Link] [DOI:10.1093/nar/gks485]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.