Detection of DNA Aptamer with High Affinity against Hepatitis B Surface Antigen by Systematic Evolution of Ligands by Exponential Enrichment
Pages 317-323
H. Rashedi; S. Arjmand; H. Rashedi; S.O. Ranaei Siadat; M. Pouryaqubi
Abstract Aims: Hepatitis B is a viral infection, which can cause serious liver problems. Hepatitis B surface antigen (HBsAg), which is produced as recombinant, is used to produce the Hepatitis B vaccine. The aim of this study was to detect DNA aptamer with high affinity against HBsAg by Systematic Evolution of Ligands by Exponential Enrichment (SELEX).
Materials and Methods: In the present experimental study, SELEX method was used to isolate and sequence a DNA aptamer with high affinity against HBsAg. The affinity of this monoclonal nucleotide sequence was calculated by fluorimetric method. The difference of initial absorption and residual value as a measure for the number of associated sequences were calculated with Prism 5 software by nonlinear regression method, Binding-saturation and one site-total model were performed, and the amount of electron affinity (Kd) was determined.
Findings: After performing the SELEX procedure and evaluating the amplified sequence with agarose gel, the result was positive control sample containing a bond in the range of 72nucleotides, indicating successful amplification of the selected sequence, using selective primers. During cloning steps from existing colonies of PCR reaction with aptamer specific primers, the presence of aptamer was confirmed in Escherichia coli bacteria. The reported aptamer had a stable secondary structure with a free energy of ΔG of less than -6.9kJ and Tm higher than 45°C.
Conclusion: The selected DNA aptamer has a high affinity to the target protein (HbsAg) and can be considered as an alternative for mAbs in chromatography column.
Acute Induction of Ganglion Cell Death and Generation of Mouse Model of Glaucoma by N-Methyl-D-Aspartate
Pages 325-330
E. Ranaei Pirmardan; Z.S. Soheili; Sh. Samiei; H. Ahmadieh; S.J. Mowla; M. Masoumi; M. Naseri
Abstract Aims: Glaucoma is an optic neuropathy that causes loss of retinal ganglion cells (RGC) and leads to blindness. This disease is a leading cause of blindness worldwide. For pre-clinical studies and finding novel therapies, using functional animal models is unavoidable. One of these models is the mice treated with N-Methyl-D-Aspartate (NMDA). The aim of this study was the acute induction of ganglion cell death and generation of mouse experimental model of glaucoma by N-Methyl-D-Aspartate.
Materials and Methods: In this experimental study, the creation of model mice with NMDA neurotoxin were created. For this purpose, retinal cell damage was induced in vivo in mice by intravitreal injection of NMDA. After removing the eyes, tissue analyses were performed on sample and control eyes. After tissue staining, the number of ganglion cells and the thickness of the retina layers and Ganglion Cell Complex (GCC) were evaluated. In addition, number of ganglion cells, thicknesses of the retina, and GCC of the optic nerve disc were measured in samples.
One-way ANOVA and SPSS 22 software were used to analyze the data.
Findings: Only 3 days after the injection to eye samples of NMDA, the thickness of the GCC and retinal layers as well as the number of ganglion cells significantly decreased compared to the control samples. The 50% reduction in the number of ganglion cells in the glucoma sample was confirmed.
Conclusion: Three days after the injection of NMDA to eye samples, the thickness of the GCC and retinal layers as well as the number of ganglion cells is significantly decreased compared to the control samples.
Design and Fabrication of Self-assembled Super Nanonetworks of Carbon Nanotube by Self-complimentary DNA
Pages 331-338
A. Mirzapoor armaki; B. Ranjbar
Abstract Aims: Compelling approach in molecular self-assembly has caused an appropriate bottom-up approach to build and design the systems and patterns with specific performance and capabilities. The aim of the current study was the design and fabrication of self-assembled super nanonetworks of carbon nanotube by self-complementary DNA and its spectroscopic study.
Materials and Methods: In the present experimental study, the sticky oligonucleotide sequence, connected to the amine groups at one end, was connected to the carboxyl groups at the beginning and end of the carbon nanotubes with covalent bond. Then, oligonucleotide connected these systems as interconnected networks. After the preparation of these nanonetworks, their biophysical properties were studied through ultraviolet–visible spectroscopy (UV-vis) and polarimetry and circular dichroism (CD) spectroscopy.
Findings: UV-vis specific absorption peak increased and DNA sequences specific peak in CD spectra appeared with DNA sequences bind to carbon nanotubes.
Conclusion: After adding the connecting sequences to the constructive units, carbon nanotubes come in the form of a complex network. The formation of network nanostructures made of carbon nanotubes by the base pair of paired oligonucleotide sequences is clearly visible in UV-vis spectra.
Increasing Thermal Stability of Saccharomyces cerevisiae Recombinant Protein Invertase by Site-directed Mutagenesis
Pages 339-345
S. Arjmand; L. Ghobadi; S.O. Ranaei-Siadat; Y. Sefidbakht; F. Farzaneh
Abstract Aims: Invertase is an enzyme that is widely used in industries. The main source of industrial production of invertase is yeast Saccharomyces cerevisiae (S. cerevisiae). Increasing thermal stability makes an important contribution to improving productivity in related production. The aim of this study was increasing thermal stability of Saccharomyces cerevisiae recombinant protein invertase by site-directed mutagenesis.
Materials and Methods: In the present experimental study, using invertase enzyme from thermophilic bacteria, Thermotoga maritima as template, it was decided to replace the threonine 345 and asparagine 349 amino acid with alanine, using site-directed mutagenesis and in Pichia pastoris, cloning was performed with the SOEing polymerase chain reaction. The activity of natural and mutant recombinant invertase enzymes at different temperatures, different pHs, stability duration, and thermal-performance stability, and Michaelis–Menten kinetics were drawn.
Findings: The thermal-structural stability of the natural and mutant invertease enzymes at 55°C showed that the mutant enzyme had a higher thermal stability at 55°C compared with the natural enzyme. Both natural and mutant enzymes exhibited a similar trend in functional stability. Reduction of Km and increase of Vmax in sucrose substrate and 5-fold increase in Kcat/Km ratio of mutant enzyme was observed.
Conclusion: Site-directed mutagenesis has no negative effect on the amount of production as well as the secretion of recombinant protein invertase and increases enzyme activity. The mutant enzyme has a higher structural stability than the natural enzyme without altering its functional stability.
Antibacterial and Antioxidant Potential of Haliclona caerulea Extracts from Tidal Island Larak, Persian Gulf
Pages 347-353
M. Karimpoor; E. Kamrani; M. Yousefzadi; M. Nazemi
Abstract Aims: Considering the importance of health and some disadvantages of the existing synthetic compounds, the present research aimed at evaluating the antibacterial and antioxidant potential of Haliclona caerulea extracts.
Materials and Methods: In the present experimental study, organic extracts of n-hexane, diethyl ether, and methanol were prepared by the Bligh and Dyer method from the marine sponge; then, antibacterial activity was measured by disc diffusion, minimum inhibitory concentration (MIC), and minimum bactericidal concentration (MBC), and antioxidant activity was measured by evaluating the regenerative power and determining the total antioxidant capacity of the extracts. The data were analyzed by Duncan's new multiple range test (MRT) one-way ANOVA test. SPSS 19 and Excel 2013 software were used.
Findings: Methanol extract had the most antibacterial effect, especially against Gram positive bacterial of Bacillus subtilis with a concentration of 2.5mg/ml and Staphylococcus aureus with a concentration of 5mg/ml. Diethyl ether extracts showed the highest antioxidant activity at concentration of 5mg/ml.
Conclusion: The methanol extract of Haliclona caerulea exhibits more antibacterial properties, and the diethyl ether extract of this sponge have a higher antioxidant effect.
Association analysis using SSR markers for resistance to Sclerotinia basal stem rot disease in oily sunflower (Helianthus annuus L.) under filed conditions
Pages 355-367
R. Paknia; R. Darvishzadeh; F. Shahriari; S. Malekzadeh
Abstract Aims: Sunflower (Helianthus annuus L.) is mainly cultivated for the extraction of edible oil, and Sclerotinia sclerotiorum is a pathogen in sunflower fields. The aim of this study was to indetify markers associated with resistance to Sclerotnia Scleritiorum diseases in sunflower, using association analysis.
Materials and Methods: In the present experimental research, a population including 100 lines of oily sunflower was cultivated. Traits such as contamination progress after 4, 8, and 12 days, 100 seeds weight of contaminated and non-contaminated plants, contaminated and non-contaminated plant yield, 100 seeds weight loss, and yield loss were studied. The molecular profiles of germplasm were prepred with 30 microsatellite primer pairs. Genetic structure analysis of population was performed based on Bayesian model.
Findings: The highest coefficient of variation was related to the yield loss (86.41%) and weight loss (78.48%), and the lowest was contamination progression after 8 and 12 days (26.47% and 20.44%), respectively. Based on the mixed linear model (MLM), 6 microsatellite markers related to traits were identified at the level of p≤0.01. The highest number of markers was associated with contamination progression after 8 days. The P733, P807, and P1256 markers were simultaneously associated with 3 traits.
Conclusion: Four lines including RHA274, H100A-83HR4, B45-03, and Iranian line with code 28 were identified with different genetic origins and high resistance levels. According to the general linear model (GLM) and MLM, 24 and 15 SSR markers are related to the traits, respectively. The P733, P807, and P1256 markers are simultaneously associated with 3 traits.
An Analysis of the Innovation Ecosystem for Human Vaccines in Iran
Pages 369-384
H. Tahoori; H. Tabatabaeian; M.R. Taghva; S.M.T. Taghavi Fard
Abstract Aims: The innovation ecosystem states that innovation through interactive networks occurs at different levels. The network has a wide range of stakeholders that are complex in the innovation process as part of the innovation ecosystem. Considering the importance of the issue of prevention in the health sector and the importance of the role of biotechnology in this field, the aim of this study was to examine the innovation ecosystem of human vaccines in Iran.
Participants and Methods: In this qualitative, exploratory, and descriptive research, while investigating the dimensions of the ecosystem of innovation in literature and its main characteristics, the status of the innovation ecosystem of human vaccines was investigated in Iran. This study was carried out through content analysis of the current documents and deep and semi-structured interviews with experts in this field. Subsequently, a description of the current state of the vaccine innovation ecosystem was presented.
Findings: Most of the graduates did not have enough familiarity with the techniques needed to attend the industry. The existence of two major vaccine manufacturers, the Pasteur and Razi Institutes, were of important properties of ecosystems. The small number of service providers and existing service companies with knowledge-based organizations were of shortcomings. Shortcomings in the characteristics of stable and dynamic interaction in the innovation ecosystem of human vaccines in Iran were evident and the making policies to create or strengthen these characteristics was one of the important issues of Iran in this area.
Conclusion: Despite the abundance of elements and actors in this field, the innovation ecosystem of vaccines in Iran has not yet been formulated in a structured way, and its creation and development requires the characteristics of the innovation ecosystem and the resolution of its challenges.
The Growth and Quality Optimization of Spirulina Biomass by Changing the Dilution of Medium and Using the Aeration Cycle
Pages 385-393
S. Ghobadian; H. Ganjidoust; B. Ayati; N. Soltani
Abstract Aims: The increasing development of microalgae applications has led to the concentration of new multidisciplinary studies to facilitate commercial cultivation of these organisms due to cost reduction and productivity enhancement. The aim of this study was the growth and quality optimization of Spirulina biomass by changing the dilution of medium and using the aeration cycle.
Materials and Methods: In this experimental study, the effect of concentration of Zarrouk medium (0 to 100% dilution) and aeration cycle on specific growth rate and dry weight, as well as the content of chlorophyll and carotenoids of Spirulina were investigated, using response surface method, central design. A total duration of 16 hours was aerated in any 24-hour period; the interval time between these aerated periods varied between 1 to 8 hours. The data were analyzed by SPSS 16 software, using multiple regression test.
Findings: The highest biomass (0.659mg/ml) was obtained at 80% concentration of culture media and aeration cycle of 2.75 hours and the highest specific growth rate (0.230 daily) was obtained at 60% concentration and aeration cycle of 4.5 hours. The highest aeration cycle (8 hours) resulted in a significant and simultaneous increase in the content of chlorophyll and carotenoids (11.65 and 2.67 mg/g, respectively).
Conclusion: The growth and quality optimization of Spirulina biomass can be accomplished by changing the dilution of the medium and using the aeration cycle.
Thermodynamic Investigation of Copper Porphyrazines and Phthalocyanine Interaction with Human Telomeric G-Quadruplex DNA
Pages 395-402
L. Hassani; E. Safaei; F. Hakimian; S. Soufian
Abstract Aims: The G-quadruplex structural motifs of DNA are considered a novel target for drug discovery. As potential compounds, small molecules that selectively target the G-quadruplex structures may be used for therapeutic purposes. The aim of this study was the thermodynamic investigation of copper porphyrazines and phthalocyanine interaction with human telomeric G-quadruplex DNA.
Materials and Methods: In the present experimental study, interaction of an anionic water-soluble phthalocyanine Cu(PcTs) and two cationic water-soluble tetrapyridinoporphyrazines, including [Cu(2,3-tmtppa)] 4+ and [Cu(3,4-tmtppa)]4+ complexes with human telomeric G-quadruplex DNA was thermodynamically investigated in different concentrations of Na+ and K+ cations, using fluorescence spectroscopy. The data were analyzed via the Stern-Volmer plot and the van't Hoff plot.
Findings: Fluorescent intercalator displacement indicated the displacement ability of the complexes with thiazole orange. Stern-Volmer plots of the porphyrazines exhibited a slight positive deviation from a straight line, suggesting both static and dynamic quenching. In addition, the quenching effect of the two porphyrazines was noticeably higher than the phthalocyanine, implying binding of Cu(PcTs) to both forms of the quadruplex was weaker compared to Cu(2,3-tmtppa) and Cu(3,4-tmtppa). Gibbs free energy (∆G) for binding was negative, implying that the interaction between the complexes and the G-quadruplex DNA was favorable thermodynamically.
Conclusion: The binding of copper porphyrazines to G-quadruplex DNA is stronger than copper phthalocyanine, and their binding is favorable thermodynamically. Porphyrazines have potential to be used as anti-cancer compounds and are suitable complexes for pharmaceutical studies.
Antibacterial, Antifungal, and Cytotoxic Effect of Stichodactyla haddoni from Persian Gulf
Pages 403-409
H. Abbasi; E. Kamrani; N. Amrollahi Biuki; M. Ehsanpoor
Abstract Aims: No study has been conducted on the antibacterial activity of sea anemone in the Persian Gulf region; thus, the aim of the present study was to investigate the antibacterial, antifungal, and cytotoxic effect of Stichodactyla haddoni from Persian Gulf.
Materials and Methods: In this experimental study, sea anemone samples were collected from the coast of Persian Gulf (Hormoz Island) and their extraction was performed with organic solvents such as methanol, dichloromethane, and acetone. The effect of the extract obtained on human pathogenic bacteria such as Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus aureus, and fungus strains such as Candida albicans, Aspergillus niger was tested, using agar disk diffusion method. The cytotoxicity of this anemic was evaluated, using brine shrimp test (BST) method on Artemia salina. The data were analyzed by SPSS 19, using Probit regression test.
Findings: The extracts studied in this study showed little anti-bacterial effect. In antifungal assay, inhibition zone was showing maximum of 17mm at 16µg concentration against Aspergillus niger of acetone extract of S.haddoni. The methanolic extracts of S.haddoni tissue had a higher cytotoxicity with less LC50 (609 330/μg/ml) than acetone and diclormethanic extracts.
Conclusion: Methanolic, acetone, and diclormethanic extracts, from S.haddoni have an antifungal effect on their antibacterial properties. It also has significant cytotoxic effects, which is higher in methanolic extract than acetone and diclormethanic extracts.
Effect of Oscillatoria Cyanobacterium Extract on Breast Cancer Cell Line and NM23 Gene Expression
Pages 411-415
F. Akbari; A. Salehzadeh; A.S. Naeemi
Abstract Aims: Considered as one of the marine resources and due to their effective compounds, cyanobacteria activate the cell death process in cancer cells and, thus, may be used as a new source. The aim of the current research was to evaluate the effect of oscillatoria cyanobacterium extract on breast cancer cell line and NM23 gene expression.
Materials and Methods: In the present experimental study, oscillatoria cyanobacterium was cultured in a negative zayander medium at 26°C to 28°C with a light intensity of 350 to 3500lux, under 12-hour lighting and 12-hour darkness, and the MCF-7 cell line was prepared. Breast cancer cells were treated by hydroalcoholic extracts of oscillatoria with different concentrations. The effect of extract on cell survival was evaluated by MTT assay and the effect of the extract on the changes of NM23 gene expression was investigated by Real-Time PCR.
Findings: The morphology of MCF-7 cell line showed that the oscillatoria cyanobacterium extract significantly altered the treated cells compared with control cells. The survival of cells decreased with increasing concentration, and there was a significant difference compared to the control sample. After 24 hours, the extract inhibited 50% cell survival at a concentration of 0.6mg/ml (p<0.001). The NM23 gene expression significantly increased over a 24-hour period compared with the control sample.
Conclusion: Oscillatoria Cyanobacterium extract decreases the breast cancer cell line and increases the NM23 gene expression.
Comparison of Thermodynamic Stability and Kinetic Refolding of Lampyris turkestanicus and Some of Its Mutants
Pages 417-425
Z. Solgi; Kh. Khalifeh; S. Hosseinkhani; B. Ranjbar
Abstract Aims: The probability of establishing electrostatic interactions due to the abundance of charged hydrophilic residues and especially arginine is considered the most important thermal stabilizing factor of thermophilic enzymes. The current study was conducted with the aim of comparing thermodynamic stability and kinetic refolding of Lampyris turkestanicus and some of its mutants.
Materials and Methods: In the present experimental thermal stability and the way of refolding Lampyris turkestanicus and 3 mutations, including ERR, ERR/I232R, ERR/Q35R/I182R/I232R were investigated by various spectroscopic techniques. In order to high expression of proteins, a single clone of each sample was selected and inoculated into 10ml of LB culture medium, containing Kanamycin at a concentration of 50μg/mg and incubated at 37°C with an ideal aeration for 12-15 hours. The culture medium was centrifuged for 5 minutes at 5000g at 4°C to provide the cellular contents of the bacteria. The results were obtained through spectroscopic methods of remote and near circular dichroism, intrinsic fluorescence, differential scanning calorimetry, and kinetics experiments, using fluorescence-stopped flow technique.
Findings: Along with the increase in the number of arginine residues at the protein level, the stability and structural compression of the mutated enzymes in comparison with the wild enzyme were increased and the thermograms obtained from differential scanning calorimetry showed a slight increase in Tm and calorimetric enthalpy of mutated proteins in comparison with wild protein.
Conclusion: The rate constant of refolding mutated enzymes has increased compared with the wild type. The improvement of thermodynamic and kinetic parameters results from the improvement of electrostatic interactions, which results in a higher degree of compression and structural density.
Effect of Deep Eutectic Solvent on Stability and Structure of Matrix Metalloproteinase 9 with Therapeutic Purpose
Pages 427-433
S. Mohseni; Kh. Khajeh; T. Tohidi Moghadam; B. Dabirmanesh; M. Haddadi
Abstract Aims: Matrix Metalloproteinase 9 (MMP-9) plays an important role in the development of many diseases such as periodontitis, atherosclerosis, and cancer. One of the methods for stability of enzyme is using deep eutectic solvents (DESs). The aim of this study was to investigate the effect of deep eutectic solvent on stability and structure of Matrix Metalloproteinase 9 with therapeutic purpose.
Materials and Methods: Herein, active full length recombinant human MMP-9 (amino acid residues 107-707) was expressed in Escherichia coli BL21, using the vector pET21a, and purification and refolding were conducted, using urea gradient method on Ni-NTA column, simultaneously. The effect of DES based on choline chloride and glycerol with a 1:1 mol ratio was investigated on activity, stability, and structure of MMP-9. The enzyme activity at different concentrations of gelatin in the presence of 15% and 30% volume/volume DESs at pH 7.8 was investigated for obtaining Vmax and km by Michaelis-Menten kinetics, using the Prism 5.0 software.
Findings: With an increase in the percentage of solvents up to 30%, the specific activity of enzyme increased, followed by a decreasing trend, and in the presence of a 30% volume/volume solvent at a temperature of 50°C and 60°C, compared with a 15% solvent and no solvent, contained more residue activity. The results showed more solubility of enzyme in 30% solvent.
Conclusion: MMp-9 has the highest activity in presence of 30% volume/volume DES based on choline chloride and glycerol. Increase in thermal stability of MMp-9 can be attributed to compactness of structure in the presence of DES.
Comparison of Essential Oils Toxicity of Satureja Khuzistanica and Satureja Rechingeri on Larvae of the Barnacle Amphibalanus Amphitrite
Pages 435-440
M. Amirinezhad; M. Yousefzadi; M. Arman; M. Rahimzadeh
Abstract Aims: Barnacles are benthos crustacean with a calcareous place. In the state of puberty, they do not move and stick on their feet to the objects in the water. The life cycle of a typical barnacle includes two stages. The aim of this study was to compare essential oils toxicity of Satureja khuzistanica and Satureja rechingeri on larvae of the barnacle Amphibalanus amphitrite.
Materials and Methods: In this experimental study, leaves of S. khuzestanica and S. rechingeri were collected. The extraction lasted 3 to 4 hours. Essential oil composition was detected by Gas chromatography–mass spectrometry (GC-MS). In order to evaluate the toxicity, the effect of essential oils with 50, 25, 12.5, 6.25, 3.125, and 1.5µg/ml concentrations was investigated on larvae of the barnacle Amphibalanus amphitrite. For data analysis, one way ANOVA, SPSS 16 software, Probit analysis with 95% confidence interval, and Excel 2010 were used.
Findings: Both S. khuzestanica and S. rechingeri had a high toxicity effect on larvae of the barnacle Amphibalanus amphitrite, which had a 100% lethal effect at 50μg/ml concentration and with increasing concentrations, more mortality was observed in the barnacle larval stages. S. khuzestanica with LC50 of 23.48μg/ml had a stronger effect on stage II nauplius. Stages 5 and 6 of barnacle larvae were also more susceptible than the rest of the stages.
Conclusion: Both S. rechingeri and S. khuzestanica have a high toxicity effect on larvae of the barnacle Amphibalanus amphitrite.
Screening and Isolation of Extracellular Lipase Producing Halophilic Bacteria Marinobacter sp. S-14 Isolated from Badab-e Surt Hypersaline Spring
Pages 441-449
L. Satari Faghihi; S. Ahmady-Asbchin; B. Seyedalipour; Gh.R. Riazi
Abstract Aims: Today, the ability to produce hydrolases enzyme that are active in high salt concentrations is considered a new approach to the use of halophilic bacteria in biotechnology. The aim of this study was the screening and isolation of extracellular lipase producing halophilic bacteria Marinobacter sp. S-14 isolated from Badab-e Surt Hypersaline spring.
Materials and Methods: In this experimental study, 42 pure bacterial colonies were isolated from different samples of water, soil, sediment, and sludge from a hypersaline spring with a screening technique on the specific culture medium of halophilic bacteria. The isolate S-14, which showed the highest lipase activity, was selected for the identification by biochemical methods and 16S rRNA gene analysis. In order to optimize the growth conditions of the isolate, considering the maximum time of bacterial growth (72 hours), temperature, salt concentration, pH, carbohydrate, and amino acid intake were examined. The results were edited by Chromas pro 2.1.1 software, and compared with EzTaxon database. Strains that were more similar to the isolate were identified. Sequence analysis of 16S rRNA were performed by BioEdit 7.1.9, Clustal-2X 2.1, and MEGA 6, and the phylogenetic tree was drawn by the neighbor joining algorithm.
Findings: The isolate S-14 had 99% similarity to Marinobacter flavimaris and Marinobacter adhaerens. The isolate had optimum growth in 5% NaCl concentration, 35°C, and 7.0 acidity.
Conclusion: The isolate S-14 can be an appropriate candidate to produce extracellular lipase enzyme and can utilize Fructose and Phenylalanine as a sole source of carbon and energy.
Effect of Replacement of Arginine 39 Amino Acid with Lysine on the Heat Denaturation of Mnemiopsin Photoprotein 1
Pages 451-457
F. Hakimi Nia; Kh. Khalifeh; R. Hasan sajedi; B. Ranjbar
Abstract Aims: Studies based on thermal stability are considered as one of the methods for investigating the physicochemical properties of proteins in biotechnology. The aim of this study was to evaluate the effect of replacement of Arginine 39 amino acid with lysine on the heat denaturation of mnemiopsin photoprotein 1.
Materials and Methods: In the current experimental study, R39K mutated mnemiopsin was compared with wild protein (in which arginine 39 amino acid was converted to the lysine amino acid). In order to investigate the effect of mutation on the content of the secondary structure, a rotation interpolation method was used. To investigate the possible changes in the rate of thermal stability of mutated and wild proteins, heat denaturation measurements were performed by differential scanning calorimeter. Bioinformatics software were used to compare the structure of two types of proteins.
Findings: The mutated R39K compression decreased in comparison with wild protein. No significant change was observed in the values of thermodynamic parameters, especially Tm. The upward movement of arginine 187 amino acid in the mutated protein decreased the thermal stability of this protein. Increasing the accessible surface of lysine 188 in the mutated protein increased its stability.
Conclusion: In thermal stability of the R39K mutated protein, various factors are effective, including the molecular movements of amino acids, their accessible surface, and the content of the secondary structure of protein stabilizing. This mutation reduces the mutated R39K compression rather than the wild protein; increasing ASA related to Lys188 amino acid in the mutated R39K compared with wild protein increases protein stability, but reducing the amount of secondary structure in this mutated, accompanied by an increase in the molecular upward movement in the Arg187 amino acid serves to reduce the stability of this mutated.
Effect of Electromagnetic Field and Nitric Oxide on the Neural Differentiation Proteins Marker and Viability of the Rat Bone Marrow Mesenchymal Stem Cells
Pages 459-464
N. Haghighat; P. Abdolmaleki; M. Behmanesh; J. Parnian
Abstract Aims: Nitric oxide (NO) plays an important role in maintaining cellular stem status, and the range of electromagnetic fields (EMF) is very deep in contrast to the electric field. The aim of this study was to investigate the effect of electromagnetic field and nitric oxide on the neural differentiation proteins marker and viability of the rat bone marrow mesenchymal stem cells.
Materials and Methods: The present experimental research was conducted on bone marrow mesenchymal stem cells of Vistar rats. For treatments of the cells, high (1mM) and low (10micromolar Deta-NO) concentrations were used as a nitric oxide donor molecule and 50Hz low-frequency electromagnetic field and they were compare with the control group. The cell viability was recorded by MTT assay test, the neural differentiation pathway gene expression was investigated by RT-PCR technique, and the neural differentiation marker protein expression was evaluated by Immunocytochemistry technique. The data were analyzed by one-way ANOVA, using SPSS 13 software.
Findings: After 24 hours of treatment with nitric oxide and EMF, the rate of viability in all groups was significantly decreased compared to the control group. After 48 hours, EMF alone, as well as with low concentration of nitric oxide did not decrease the rate of viability and cell growth increased compared to the control group. In the group treated with high nitric oxide concentration along with EMF, MAP2 protein was expressed in the number of cells more than the control group and the one treated with EMF.
Conclusion: The electromagnetic field, along with its high concentration of nitric oxide, decreases the number of rat bone marrow mesenchymal stem cells and, by increasing cell size, gene expression and neural differentiation proteins marker facilitates their differentiation to nerve-like cells.
In vivo Comparative Toxicity of Silver Nanoparticles and Bio-productivity in Zebrafish (Embryo and Adult Stages)
Pages 465-472
S. Mashjoor; M. Alishahi; Z. Tulaby Dezfuly
Abstract Aims: The bio-toxicity of silver nanoparticles (AgNPs) in the aquatic ecosystem and the detection of lethal concentrations of this material are of importance. The aim of this study was in vivo comparative toxicity of silver nanoparticles and bio-productivity in zebrafish (Danio rerio) in embryo and adult stages.
Materials and Methods: The present experimental study was carried out on 30 fertilized eggs and 30 adult zebrafish and the effects of chemical and bio-productivity of AgNPs were evaluated by brown seaweed (Sargassum boveanum) in evolutionary stages of the embryo and adult zebrafish with a control group and in incremental concentrations. The mortality rate was recorded at 24, 48, 72, and 96 hours after exposure and the data were analyzed by EPA Probit Analysis 1.5 and SPSS 19 softwares, using one-way analysis of variance and Duncan's multiple range test.
Findings: The toxicity of both types of AgNPs in both evolutionary stages was increased with increasing concentrations and time (p<0.05). After 96 hours, the lethal concentration 50 (LC50) in adult fish was 0.788mg/l for chemical AgNPs and 0.409mg/l for bio-produced AgNPs. Mortality rate at the highest concentration (3mg/l) of AgNPs at 72 and 96 hours in all groups was 100%.
Conclusion: Comparison of the toxicity result showed that the biosynthesis form of AgNPs is more toxic potential than chemical form of AgNPs. It seems the sensitivity of embryo stage to both of silver nanoparticles more than to mature stage.
Mapping Genes Controlling Morphological Traits in F3 Families Caused by BecherÃKavir Cross in Barley
Pages 473-482
R. Daghaghelh; H. Sabouri; H. Hosseini Moghaddm; E. Jorjani; H.A. Fallahi
Abstract Aims: The important achievement of genetic analysis of Quantitative trait locus (QTLs) is to facilitate the investigation of the inheritance of simple Mendelian traits. The aim of this study was mapping genes controlling morphological traits in F3 Families caused by Becher×Kavir cross in barley.
Materials and Methods: In the present experimental research, in order to map QTLs, 103 F3 families caused by Becher×Kavir cross were cultivated in a randomized complete block design with 3 replications during 2014-2015. Number of germinated seeds, during the grain filling period, plant height, peduncle length, seed weight, and harvest index were evaluated. Linkage map was prepared, using SSR, iPBS, IRAP, and ISSR marker. QTLs were identified by QGENE 4.0 software and QTL analysis was performed by composite interval mapping.
Findings: The identified QTLs justified with load score of 2.007, 8.6% of variance of phenotype germinated seed number, score of 22.2, 9.5% variance of phenotype grain filling period, score of 2.74, 1.16% of variance of plant height, score of 2.19, 9.3% of the variance of the peduncle length, the score of 2.04, 8.7% of variance of the seed weight, and with the scores of 2.38, 2.38, and 2.16 justified 10.1, 10.1, and 9.2% of the variance of the harvest index, respectively.
Conclusion: There are one QTL on chromosome 6 and ISSR38-4 closely marker for number of germinated seeds, one QTL on chromosome 7 in iPBS2076-6-iPBS2085-1 distance of marker for during the grain filling period, one QTL on chromosome 2 in iPBS2083-3-HVBKASI distance of marker for plant height, one QTL on chromosome 6 and ISSR38-4 closely marker for peduncle length, one QTL on chromosome 3 in iPBS2075-5-ISSR38-7 distance of marker for seed weight, and 3 QTLs for harvest index, respectively.
Chlorophyll and Carotenoid Optimization of Spirulina Biomass by Innovative Photobioreactor
Pages 483-494
S. Ghobadian; H. Ganjidoust; B. Ayati; N. Soltani
Abstract
