Volume 10, Issue 4 (2019)                   JMBS 2019, 10(4): 601-608 | Back to browse issues page

XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Mortazavi Farsani S, Sadeghizadeh M, Shirzad H, Najafi F. The effects of Nanocurcumin on Expression Induction of Transcription Factors Involved in Hematopoietic Stem Cell Differentiation to Precursor Myeloid Cells. JMBS 2019; 10 (4) :601-608
URL: http://biot.modares.ac.ir/article-22-28278-en.html
1- Genetics Department, Biological Sciences Faculty, Tarbiat Modares University, Tehran, Iran
2- Genetics Department, Biological Sciences Faculty, Tarbiat Modares University, Tehran, Iran, Tarbiat Modares University, Nasr Bridge, Jalal-Al-Ahmad Highway, Tehran, Iran. Postal Code: 1411713116 , sadeghma@modares.ac.ir
3- Resin & Additives Department, Institute for Color Science & Technology, Tehran, Iran.
Abstract:   (4050 Views)
Aims: Hematopoietic stem cells are responsible for the production of blood cells in the bone marrow. During the process of differentiation, these cells commitment to two precursor cell lines include myeloid and lymphoid cells. Various blood cells, excluded lymphocytes, generates from myeloid cells. Some patients with severe anemia or thrombocytopenia receive hematopoietic stem cell through transplantation. Finding a potential component for inducing differentiation of hematopoietic stem cells before transplantation, could be an appropriate strategy for the acceleration of blood cells production in recipient persons. Various studies indicate the ability of Curcumin for inducing of cell differentiation. This component can alter many of cellular mechanisms.
Material and methods: The aim of this project was to evaluate the effects of Nanocurcumin on mRNA expression levels of GATA1, GATA2, c-Myb and Hhex genes and alteration of cellular ROS in umbilical cord blood-derived hematopoietic stem cells. Nanocurcumin was synthesized from Curcumin, Oleic acid, and PEG400. The rate of Nanocurcumin delivery into the cells was also evaluated.
Findings: Our results show that intracellular ROS and expression levels of GATA1, c-Myb, and Hhex transcription factors were significantly increased after treatment with Nanocurcumin (p<0.05). These transcription factors involve in myeloid differentiation.
Conclusion: Enhancement of these transcription factors expression making Nanocurcumin a potential candidate for applying in myeloid differentiation media and basic and clinical studies.
Full-Text [PDF 1055 kb]   (1714 Downloads)    
Article Type: Original Research | Subject: Pharmaceutical Biotechnology
Received: 2018/12/18 | Accepted: 2019/02/2 | Published: 2019/12/21

References
1. Iwasaki H, Akashi K. Myeloid lineage commitment from the hematopoietic stem cell. Immunity. 2007;26(6):726-40. [Link] [DOI:10.1016/j.immuni.2007.06.004]
2. Chao MP, Seita J, Weissman IL. Establishment of a normal hematopoietic and leukemia stem cell hierarchy. In: Cold Spring Harbor Symposia on Quantitative Biology, 1 January, 2008, United States. New York: Cold Spring Harbor Laboratory Press; 2008. pp. 439-449. [Link] [DOI:10.1101/sqb.2008.73.031]
3. Laiosa CV, Stadtfeld M, Graf T. Determinants of lymphoid-myeloid lineage diversification. Annu Rev Immunol. 2006;24:705-38. [Link] [DOI:10.1146/annurev.immunol.24.021605.090742]
4. Fujiwara Y, Browne CP, Cunniff K, Goff SC, Orkin SH. Arrested development of embryonic red cell precursors in mouse embryos lacking transcription factor GATA-1. Proc Natl Acad Sci U S A. 1996;93(22):12355-8. [Link] [DOI:10.1073/pnas.93.22.12355]
5. Pundhir S, Bratt Lauridsen FK, Schuster MB, Jakobsen JS, Ge Y, Schoof EM, et al. Enhancer and transcription factor dynamics during myeloid differentiation reveal an early differentiation block in Cebpa null progenitors. Cell Rep. 2018;23(9):2744-57. [Link] [DOI:10.1016/j.celrep.2018.05.012]
6. Iwasaki H, Mizuno SI, Arinobu Y, Ozawa H, Mori Y, Shigematsu H, et al. The order of expression of transcription factors directs hierarchical specification of hematopoietic lineages. Genes Dev. 2006;20(21):3010-21. [Link] [DOI:10.1101/gad.1493506]
7. Iwasaki H, Mizuno SI, Wells RA, Cantor AB, Watanabe S, Akashi K. GATA-1 converts lymphoid and myelomonocytic progenitors into the megakaryocyte/erythrocyte lineages. Immunity. 2003;19(3):451-62. [Link] [DOI:10.1016/S1074-7613(03)00242-5]
8. Jackson JT, Ng AP, Shields BJ, Haupt S, Haupt Y, McCormack MP. Hhex induces promyelocyte self-renewal and cooperates with growth factor independence to cause myeloid leukemia in mice. Blood Adv. 2018;2(4):347-60. [Link] [DOI:10.1182/bloodadvances.2017013243]
9. Migueles RP, Shaw L, Rodrigues NP, May G, Henseleit K, Anderson KG, et al. Transcriptional regulation of Hhex in hematopoiesis and hematopoietic stem cell ontogeny. Dev Biol. 2017;424(2):236-45. [Link] [DOI:10.1016/j.ydbio.2016.12.021]
10. Paz H, Lynch MR, Bogue CW, Gasson JC. The homeobox gene Hhex regulates the earliest stages of definitive hematopoiesis. Blood. 2010;116(8):1254-62. [Link] [DOI:10.1182/blood-2009-11-254383]
11. Ito K, Hirao A, Arai F, Takubo K, Matsuoka S, Miyamoto K, et al. Reactive oxygen species act through p38 MAPK to limit the lifespan of hematopoietic stem cells. Nat Med. 2006;12(4):446-51. [Link] [DOI:10.1038/nm1388]
12. Jang YY, Sharkis SJ. A low level of reactive oxygen species selects for primitive hematopoietic stem cells that may reside in the low-oxygenic niche. Blood. 2007;110(8):3056-63. [Link] [DOI:10.1182/blood-2007-05-087759]
13. Buhrmann C, Mobasheri A, Matis U, Shakibaei M. Curcumin mediated suppression of nuclear factor-κB promotes chondrogenic differentiation of mesenchymal stem cells in a high-density co-culture microenvironment. Arthritis Res Ther. 2010;12(4):R127. [Link] [DOI:10.1186/ar3065]
14. Zhuang W, Long L, Zheng B, Ji W, Yang N, Zhang Q, et al. Curcumin promotes differentiation of glioma‐initiating cells by inducing autophagy. Cancer Sci. 2012;103(4):684-90. [Link] [DOI:10.1111/j.1349-7006.2011.02198.x]
15. Motahari P, Sadeghizadeh M, Behmanesh M, Sabri Sh, Zolghadr F. Generation of stable ARE-driven reporter system for monitoring oxidative stress. DARU J Pharm Sci. 2015;23:38. [Link] [DOI:10.1186/s40199-015-0122-9]
16. López‐Lázaro M. Anticancer and carcinogenic properties of curcumin: Considerations for its clinical development as a cancer chemopreventive and chemotherapeutic agent. Mol Nutr Food Res. 2008;52(Suppl 1):S103-27. [Link] [DOI:10.1002/mnfr.200700238]
17. Babaei E, Sadeghizadeh M, Hassan ZM, Feizi MA, Najafi F, Hashemi SM. Dendrosomal curcumin significantly suppresses cancer cell proliferation in vitro and in vivo. Int Immunopharmacol. 2012;12(1):226-34. [Link] [DOI:10.1016/j.intimp.2011.11.015]
18. Sadeghizadeh M, Ranjbar B, Damaghi M, Khaki L, Sarbolouki MN, Najafi F, et al. Dendrosomes as novel gene porters‐III. J Chem Technol Biotechnol. 2008;83(6):912-20. [Link] [DOI:10.1002/jctb.1891]
19. Anand P, Kunnumakkara AB, Newman RA, Aggarwal BB. Bioavailability of curcumin: Problems and promises. Mol Pharmaceutics. 2007;4(6):807-18. [Link] [DOI:10.1021/mp700113r]
20. Tahmasebi Birgani M, Erfani Moghadam V, Babaei E, Najafi F, Zamani M, Shariati M, et al. Dendrosomal nano-curcumin; The novel formulation to improve the anticancer properties of curcumin. Prog Biol Sci. 2015;5(2):143-58. [Link]
21. Attar A. Changes in the cell surface markers during normal hematopoiesis: A guide to cell isolation. Global J Hematol Blood Transfus. 2014;1(1):20-8. [Link] [DOI:10.15379/2408-9877.2014.01.01.4]
22. Wald DN, Vermaat HM, Zang Sh, Lavik A, Kang Z, Peleg G, et al. Identification of 6-benzylthioinosine as a myeloid leukemia differentiation-inducing compound. Cancer Res. 2008;68(11):4369-76. [Link] [DOI:10.1158/0008-5472.CAN-07-6559]
23. Goloviznina NA, Verghese SC, Me Yoon Y, Taratula O, Marks DL, Kurre P. Mesenchymal stromal cell-derived extracellular vesicles promote myeloid-biased multipotent hematopoietic progenitor expansion via toll-like receptor engagement. J Biol Chem. 2016;291(47):24607-17. [Link] [DOI:10.1074/jbc.M116.745653]
24. Du Y, Campbell JL, Nalbant D, Youn H, Bass AC, Cobos E, et al. Mapping gene expression patterns during myeloid differentiation using the EML hematopoietic progenitor cell line. Exp Hematol. 2002;30(7):649-58. [Link] [DOI:10.1016/S0301-472X(02)00817-2]
25. Ludin A, Gur-Cohen S, Golan K, Kaufmann KB, Itkin T, Medaglia C, et al. Reactive oxygen species regulate hematopoietic stem cell self-renewal, migration and development, as well as their bone marrow microenvironment. Antioxid Redox Signal. 2014;21(11):1605-19. [Link] [DOI:10.1089/ars.2014.5941]
26. Woo JH, Kim YH, Choi YJ, Kim DG, Lee KS, Bae JH, et al. Molecular mechanisms of curcumin-induced cytotoxicity: Induction of apoptosis through generation of reactive oxygen species, down-regulation of Bcl-X L and IAP, the release of cytochrome c and inhibition of Akt. Carcinogenesis. 2003;24(7):1199-208. [Link] [DOI:10.1093/carcin/bgg082]
27. Nurhayati RW, Ojima Y, Nomura N, Taya M. Promoted megakaryocytic differentiation of K562 cells through oxidative stress caused by near ultraviolet irradiation. Cell Mol Biol Lett. 2014;19(4):590-600. [Link] [DOI:10.2478/s11658-014-0215-3]
28. Wilson NK, Miranda-Saavedra D, Kinston S, Bonadies N, Foster SD, Calero-Nieto F, et al. The transcriptional program controlled by the stem cell leukemia gene Scl/Tal1 during early embryonic hematopoietic development. Blood. 2009;113(22):5456-65. [Link] [DOI:10.1182/blood-2009-01-200048]
29. Goodings C, Smith E, Mathias E, Elliott N, Cleveland SM, Tripathi RM, et al. Hhex is required at multiple stages of adult hematopoietic stem and progenitor cell differentiation. Stem Cells. 2015;33(8):2628-41. [Link] [DOI:10.1002/stem.2049]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.