Volume 9, Issue 3 (2018)                   JMBS 2018, 9(3): 473-482 | Back to browse issues page

XML Persian Abstract Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Daghaghelh R, Sabouri H, Hosseini Moghaddm H, Jorjani E, Fallahi H. Mapping Genes Controlling Morphological Traits in F3 Families Caused by Becher×Kavir Cross in Barley. JMBS 2018; 9 (3) :473-482
URL: http://biot.modares.ac.ir/article-22-13139-en.html
1- Plant Production Department, Agriculture Faculty, Gonbad Kavus University, Gonbad Kavus, Iran
2- Plant Production Department, Agriculture Faculty, Gonbad Kavus University, Gonbad Kavus, Iran, End of Basirat Boulivard, Shahid Fallahi Street, Gonbad Kavus, Iran , hos.sabouri@gmail.com
3- Biology Department, Basic Sciences Faculty, Gonbad Kavus University, Gonbad Kavus, Iran
4- Research & Education Center of Agriculture & Natural Resources in Mazandaran, Agricultural Extension & Education Research Organization, Sari, Iran
Abstract:   (4340 Views)
Aims: The important achievement of genetic analysis of Quantitative trait locus (QTLs) is to facilitate the investigation of the inheritance of simple Mendelian traits. The aim of this study was mapping genes controlling morphological traits in F3 Families caused by Becher×Kavir cross in barley.
Materials and Methods: In the present experimental research, in order to map QTLs, 103 F3 families caused by Becher×Kavir cross were cultivated in a randomized complete block design with 3 replications during 2014-2015. Number of germinated seeds, during the grain filling period, plant height, peduncle length, seed weight, and harvest index were evaluated. Linkage map was prepared, using SSR, iPBS, IRAP, and ISSR marker. QTLs were identified by QGENE 4.0 software and QTL analysis was performed by composite interval mapping.
Findings: The identified QTLs justified with load score of 2.007, 8.6% of variance of phenotype germinated seed number, score of 22.2, 9.5% variance of phenotype grain filling period, score of 2.74, 1.16% of variance of plant height, score of 2.19, 9.3% of the variance of the peduncle length, the score of 2.04, 8.7% of variance of the seed weight, and with the scores of 2.38, 2.38, and 2.16 justified 10.1, 10.1, and 9.2% of the variance of the harvest index, respectively.
Conclusion: There are one QTL on chromosome 6 and ISSR38-4 closely marker for number of germinated seeds, one QTL on chromosome 7 in iPBS2076-6-iPBS2085-1 distance of marker for during the grain filling period, one QTL on chromosome 2 in iPBS2083-3-HVBKASI distance of marker for plant height, one QTL on chromosome 6 and ISSR38-4 closely marker for peduncle length, one QTL on chromosome 3 in iPBS2075-5-ISSR38-7 distance of marker for seed weight, and 3 QTLs for harvest index, respectively.
Keywords: Barley, Microsatellite, QTL
Full-Text [PDF 964 kb]   (1573 Downloads)    
Article Type: Research Paper | Subject: Agricultural Biotechnology
Received: 2016/10/16 | Accepted: 2017/02/6 | Published: 2018/09/22

1. Ramsay L, Macaulay M, Degli Ivanissevich S, Mac Lean K, Cardle L, Fuller J, et al. A simple sequence repeat-based linkage map of barley. Genetics. 2000;156(4):1997-2005. [Link]
2. Martin JH, Leonard Deceased WH, Stamp DL, Waldren RP. Principles of field crop production. 4th Edition. New York City: Collier Macmillan; 2005. [Link]
3. Komatsuda T, Salomon B, Bryngelsson T, Von Bothmer R. Phylogenetic analysis of Hordeum marinum Huds. based on nucleotide sequences linked to the vrs1 locus. Plant Syst Evol. 2001;227(3/4):137-44. [Link]
4. Zhang ZH, Yu SB, Yu T, Huang Z, Zhu YG .Mapping quantitative trait loci (QTLs) for seedling vigor using recombinant inbred lines of rice (Oryza sativa L.). Field Crop Res. 2005;91(2-3):161-70. [Link]
5. Knapp SJ. Marker-assisted selection as strategy for increasing the probability of selecting superior genotypes. Crop Sci. 1998;38(5):1164-74. https://doi.org/10.2135/cropsci1998.0011183X003800050001x [Link] [DOI:10.2135/cropsci1998.0011183X003800050009x]
6. Mondini L, Noorani A. Pagnotta MA.. Assessing plant genetic diversity by molecular tools. Divers. 2009;1(1):19-35. [Link] [DOI:10.3390/d1010019]
7. Gale MD, Devos KM. Plant comparative genetics after 10 years. Science. 1998;282(5389):656-9. [Link] [DOI:10.1126/science.282.5389.656]
8. Angaji, SA. QTL Mapping: A few key points. Int J Appl Res Nat Prod. 2009;2(2):1-3. [Link]
9. Somers DJ, Fedak G, Savard M. Molecular mapping of novel genes controlling Fusarium head blight resistance and deoxynivalenol accumulation in spring wheat. Genome. 2003;46(4):555-64. [Link] [DOI:10.1139/g03-033]
10. Wang J, Sun G, Ren X, Li C, Liu L, Wang Q, et al. QTL underlying some agronomic traits in barley detected by SNP markers. BMC Genet. 2016;17:103. [Link] [DOI:10.1186/s12863-016-0409-y]
11. Hayes PM, Lui BH, Knapp SJ, Chen F, Jones B, Blake T, et al. Quantitative trait locus effects and environmental interaction in a sample of North American barley germ plasm. Theor Appl Genet. 1993;87(3):392-401. [Link] [DOI:10.1007/BF01184929]
12. Buck-Sorlin GH. The search for QTL in barley (Hordeum vulgare L.) using a new mapping population. Cell Mol Biol Lett. 2002;7(2A):523-35. [Link]
13. Kicherer S, Backes G, Walther U, Jahoor A. Localising QTLs for leaf rust resistance and agronomic traits in barley (Hordeum vulgare L.). Theor Appl Genet. 2000;100(6):881-8. [Link]
14. Mohammadi M, Shekarli S, Naghavi MR. Genetic mapping of quantitative trait loci controlling of leaf traits related to drought tolerance in the doubled haploid barley population. Sci J Agric. 2007;30(3):37-48. [Persian] [Link]
15. Ren XF, Sun DF, Dong WB, Sun GL, Li CD. Molecular detection of QTL controlling plant height components in a doubled haploid barley population. Genet Mol Res. 2014;13(2):3089-99. [Link] [DOI:10.4238/2014.April.17.5]
16. Mohammadi M, Taleei A, Zeinali H, Naghavi MR, Ceccarelli S, Grando S, et al. QTL analysis for phenologic traits in doubled haploid population of barley. Int J Agric Biol. 2005;7(5):820-3. [Link]
17. Wu WR, Li WM. Model fitting and model testing in the method of joint mapping of quantitative trait loci. Theor Appl Genet. 1996;92(3-4):477-82. [Link]
18. Zeng ZB. Precision mapping of quantitative trait loci. Genetics. 1994;136(4):1457-68. [Link]
19. Saghai-Maroof MA, Soliman KM, Jorgensen RA, Allard RW. Ribosomal DNA spacer-length polymorphisms in barley: Mendelian inheritance, chromosomal location, and population dynamics. Proc Natl Acad Sci U S A. 1984;81(24):8014-8. [Link] [DOI:10.1073/pnas.81.24.8014]
20. Manly KF, Olson JM. Overview of QTL mapping software and introduction to Map Manager QT. Mamm Genome. 1999;10(4):327-34. [Link] [DOI:10.1007/s003359900997]
21. Schmalenbach I, Léon J, Pillen K. Identification and verification of QTLs for agronomic traits using wild barley introgression lines. Theor Appl Genet. 2009;118(3):483-97. [Link] [DOI:10.1007/s00122-008-0915-z]
22. Rahimi M, Ebrahimpour F, Eshghi R. Inheritance and QTL mapping of agronomical traits in barley. J Crop Biotechnol. 2013;2(3):35-48. [Persian] [Link]
23. Mohammadi M, Baum M. QTL analysis of morphologic traits in doubled haploid population of barley. J Water Soil Sci. 2008;12(45):111-20. [Persian] [Link]
24. Wang J, Yang J, Jia Q, Zhu J, Shang Y, Hua W, et al. A new QTL for plant height in barley (Hordeum vulgare L.) showing no negative effects on grain yield. PLoS One. 2014;9(2):e90144. [Link]
25. Wang J, Yang J, Mc Neil DL, Zhou M. Identification and molecular mapping of a dwarfing gene in barley (Hordeam vulgare L.) and its correlation with other agronomic traits. Euphytica. 2010;175(3):331-42. [Link] [DOI:10.1007/s10681-010-0175-2]
26. Siahsar BA, Taleei AR, Peyghambari SA, Naghavi MR, Rezaee AM, Kohkan Sh. QTL analysis of forage quantity and quality-related traits of barley. J Crop Prod Process. 2009;13(47):195-207. [Persian] [Link]
27. Mohammadi V, Ghanadha MR, Zali AA, Yazdi Samadi B, Byrne P. Mapping QTLs for morphological traits in wheat. Iran J Agric Sci. 2005;36(1):145-57. [Persian] [Link]
28. Ahmadi Ochtapeh H, Soltanloo H, Ramezanpour SS, Naghavi MR, Kalate Arabi M, Nik Khah HR, et al. Localization of QTLs conferring lodging resistance in barley recombinant inbred lines. Mod Genet J. 2016;11(2):237-44. [Persian] [Link]
29. Bezant J, Laurie D, Pratchett N, Chojecki J, Kearsey M. Mapping QTL controlling yield and yield components in a spring barley (Hordeum vulgare L.) cross using marker regression. Mol Breed. 1997;3(1):29-38. [Link] [DOI:10.1023/A:1009648220852]
30. Shahin Niya F, Rezaee AM, Seyed Tabatabaee BE, Mohammadi SA. QTL mapping of yield and yield components in barley lines. Seed Plant Improv J. 2014;30-1(1):85-101. [Persian] [Link]
31. Golabadi M, Arzani A, Mirmohammadi Maibody SAM, Sayed Tabatabaei BE, Mohammadi SA. Identification of microsatellite markers linked with yield components under drought stress at terminal growth stages in durum wheat. Euphytica. 2011;177(2):207-21. [Link] [DOI:10.1007/s10681-010-0242-8]
32. Mahdinejad N, Omidi M, Jalal Kamali MR, Naghavi MR, Fakheri BA. QTL analysis of some phenological and morphological traits in Babax and Seri M82 recombinant inbred line population of wheat during salinity stress. Mod Genet J. 2014;9(2):207-18. [Persian] [Link]

Add your comments about this article : Your username or Email:

Send email to the article author

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.