Volume 9, Issue 2 (2018)                   JMBS 2018, 9(2): 301-308 | Back to browse issues page

XML Persian Abstract Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Karimi E, Yazdian F, Rasekh B, Akhavan Sepahy A, Rashedi H, Sheykhha M, et al . Biodesulfurization of Dibenzothiophene by Rhodococcus erythropolis IGTS8 in the Presence of Magnetic Nanoparticles and Carbon Nanotubes Surface-modified Polyethylene Glycol. JMBS 2018; 9 (2) :301-308
URL: http://biot.modares.ac.ir/article-22-17094-en.html
1- Life Science Engineering Department, New Sciences & Technologies Faculty, University of Tehran, Tehran, Iran
2- Life Science Engineering Department, New Sciences & Technologies Faculty, University of Tehran, Tehran, Iran, New Sciences & Technologies Faculty, North Kargar Street, Tehran, Iran. Postal Code: 1439957131 , yazdian@ut.ac.ir
3- Biotechnology Research Center, Research Institute of Petroleum Industry, Tehran, Iran
4- Biology Department, Life Science Faculty, North Tehran Branch, Islamic Azad Universities, Tehran, Iran
5- Biotechnology Department, Chemical Engineering Faculty, University of Tehran, Tehran, Iran
6- Biotechnology Research Center, International Campus, Shahid Sadoughi University of Medical Sciences & Health Services, Yazd, Iran
7- New Medical Sciences & Technologies Department, Paramedical Faculty, Shahid Sadoughi University of Medical Sciences & Health Services, Yazd, Iran
Abstract:   (4468 Views)
Aims: Today, crude oil is one of the main sources of energy. The combustion of sulfur-containing compounds in fossil fuels leads to the production of sulfur oxides that has adverse effects to human health and the environment. At the moment, the current method for removal of sulfur is Hydrodesulfurization. The aim of this study was to investigate the effect of magnetic nanoparticles and modified carbon nanotubes as nano-adsorbent on improving the biodesulfurization activity of microorganisms (Rhodococcus erythropolis IGTS8).
Materials and Methods: In the current experimental study, the nanoparticles were synthesized by chemical co-precipitation and the carbon nanotubes were initially carboxylated. Multi-layer carbon nanotubes were mixed with 95% sulfuric acid and 52% nitric acid (volume ratio 1:3) and, then, modified by polyethylene glycol. In order to characterize nanoparticles and carbon nanotubes, scanning transmission electron microscopy (STEM), X-ray diffraction, magnetic surveys, analysis of arch Raman, and fourier-transform infrared spectroscopy (FTIR) were conducted.
Findings: The size of nanoparticles was estimated to be 7-8nm and modified carbon nanotubes showed the highest solubility as well as stability in deionized water for two weeks. The growth of microorganisms in the presence of magnetic nanoparticles and carbon nanotubes compared to their absence increased by 40% and 8%, respectively. Moreover the desulfurization activity of microorganisms in the presence of magnetic nanoparticles and carbon nanotubes showed a significant increase compared to their absence.
Conclusion: Nanoparticles with adsorption of sulfur compounds increase their availability for microorganisms.
Full-Text [PDF 700 kb]   (3171 Downloads)    
Article Type: Research Paper | Subject: Agricultural Biotechnology
Received: 2016/10/28 | Accepted: 2017/06/14 | Published: 2018/06/21

1. Shavandi M, Sadeghizadeh M, Khajeh K, Mohebali G, Zomorodipour A. Genomic structure and promoter analysis of the dsz operon for dibenzothiophene biodesulfurization from Gordonia alkanivorans RIPI90A. Appl Microbiol Biotechnol. 2010;87(4):1455-61. [Link] [DOI:10.1007/s00253-010-2605-4]
2. Mohebali G, Ball AS. Biocatalytic desulfurization (BDS) of petrodiesel fuels. Microbiology. 2008;154(Pt 8):2169-83. [Link] [DOI:10.1099/mic.0.2008/017608-0]
3. Alves L, Marques S, Matos J, Tenreiro R, M. Gírio F. Dibenzothiophene desulfurization by Gordonia alkanivorans strain 1B using recycled paper sludge hydrolyzate. Chemosphere. 2008;70(6): 967-73. [Link] [DOI:10.1016/j.chemosphere.2007.08.016]
4. Maxwell S, Yu J. Selective desulphurization of dibenzothiophene by a soil bacterium: Microbial DBT desulphurization. Process Biochem. 2000;35(6):551-6. [Link] [DOI:10.1016/S0032-9592(99)00102-8]
5. Song C, Hsu CS. Chemistry of diesel fuels. Boca Raton: CRC Press; 2000. [Link]
6. Del Olmo CH, Alcon A, Santos VE, Garcia-Ochoa F. Modeling the production of a Rhodococcus erythropolis IGTS8 biocatalyst for DBT biodeulfurization: Influence of media composition. Enzyme Microb Technol. 2005;37(2):157-66. [Link] [DOI:10.1016/j.enzmictec.2004.06.016]
7. Ansari F, Libor P, Grigoriev S, Tothill I.E, Ramsden J.J. DBT degradation enhancement by decorating Rhodococcus erythropolis IGST8 with Magnetic Fe3O4 nanoparticles. Biotechnol Bioeng. 2009;102(5):1505-12. [Link] [DOI:10.1002/bit.22161]
8. Caro A, Boltes K, Letón P, García-Calvo E. Dibenzothiophene biodesulfurization in resting cell conditions by aerobic bacteria. Biochem Eng J. 2007;35(2):191-7. [Link] [DOI:10.1016/j.bej.2007.01.013]
9. Rashidi L, Mohebali GA, Towfighi Darian J, Rasekh B. Biodesulfurization of dibenzothiophene and its alkylated derivates through the sulfur-specific pathway by the bacterium RIPI-S81. Afr J Biotechnol. 2006;5(4):351-6. [Link]
10. Alves L, Melo M, Mendonça D, Simões F, Matosa J, Tenreiro R, et al. Sequencing, cloning and expression of the dsz genes required for dibenzothiophene sulfon desulfurization from Gordonia alkanivorans strain 1B. Enzyme Microb Technol. 2007;40(6):1598-603. [Link] [DOI:10.1016/j.enzmictec.2006.11.008]
11. Meng L, Fu C, Lu Q. Advanced technology for functionalization of carbon nanotubes. Prog Nat Sci. 2009;19(7):801-10. [Link] [DOI:10.1016/j.pnsc.2008.08.011]
12. Mubarak NM, Shahu JN, Abdullah EC, Jayakumar NS. Removal of heavy metals from wastewater using carbon nanotubes. Sep Purif Rev. 2014;43(4):311-38. [Link] [DOI:10.1080/15422119.2013.821996]
13. Zhang W, Zhang H, Xiao J, Zhao Z, Yu M, Li Z. Carbon nanotube catalysts for oxidative desulfurization of a model diesel fuel using molecular oxygen. Green Chem. 2014;16(1):211-20. [Link] [DOI:10.1039/C3GC41106K]
14. Le VT, Ngo CL, Le QT, Ngo TT, Nguyen DN, Vu MT. Surface modification and functionalization of carbon nanotube with some organic compounds. Adv Nat Sci Nanosci Nanotechnol. 2013;4(3):035017. [Link] [DOI:10.1088/2043-6262/4/3/035017]
15. Nie H, Guo W, Yuan Y, Dou Z, Shi Z, Liu Z, et al. PEGylation of double-walled carbon nanotubes for increasing their solubility in water. Nano Res. 2010;3(2):103-9. [Link] [DOI:10.1007/s12274-010-1014-4]
16. Keyhanian F, Shariati S, Faraji M, Hesabi M. Magnetite nanoparticles with surface modification for removal of methyl violet from aqueous solutions. Arabian Journal of Chemistry. 2016;9(1):S348-S54. [Link] [DOI:10.1016/j.arabjc.2011.04.012]
17. Cheraghipour E, Javadpour S, Mehdizadeh AR. Citrate capped superparamagnetic iron oxide nanoparticles used for hyperthermia therapy. J Biomed Sci Eng. 2012;5(12):715-9. [Link] [DOI:10.4236/jbise.2012.512089]
18. Nigam S, Barick KC, Bahadur D. Development of citrate-stabilized Fe3O4 nanoparticles: Conjugation and release of doxorubicin for therapeutic applications. 2011;323(2):237-43. [Link]
19. Ebrahiminezhad A, Varma V, Yang S, Berenjian A. Magnetic immobilization of Bacillus subtilis natto cells for menaquinone-7 fermentation. Appl Microbiol Biotechnol. 2016;100(1):173-80. [Link] [DOI:10.1007/s00253-015-6977-3]

Add your comments about this article : Your username or Email:

Send email to the article author

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.