Volume 9, Issue 1 (2018)                   JMBS 2018, 9(1): 137-144 | Back to browse issues page

XML Persian Abstract Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Jookar kashi F, Owlia P, Amoozegar M. Evaluation of Prokaryotic Diversity in Hypersaline Environment by Culture-independent Method. JMBS 2018; 9 (1) :137-144
URL: http://biot.modares.ac.ir/article-22-24321-en.html
1- Biotechnology Department, Chemistry Faculty, University of Kashan, Kashan, Iran, University of Kashan, Kilometer 6 of Ghotb-e Ravandi Boulevard Kashan, Iran. Postal Code: 873175315 , Jookar@kashanu.ac.ir
2- Molecular Microbiology Research Center, Shahed University, Tehran, Iran
3- Microbiology Department, Biology & Center of Excellence in Phylogeny of Living Organisms Faculty, University of Tehran, Tehran, Iran
Abstract:   (3900 Views)
Aims: Microorganisms are present not only in common environment, but also in extreme environments. Salt lakes with near or at saturating salinity are spread all over the world. Urmia Salt Lake is one of these hypersaline environments. The present study aimed at evaluating prokaryotic diversity in hypersaline environment by culture-independent method.
Materials and Methods: In this experimental study, different regions of Urmia Lake were sampled and the genomic material extracted from the water sample was used as a pattern for the amplification of 16S rDNA and a fragment of the bop gene via polymerase chain reaction. By cloning, each of the amplified fragments belonging to a single strain was amplified by T/A cloning vector. To further investigate the biodiversity of Haloarchaea, the biodiversity of bop gene was studied in addition to studying 16S rDNA.
Findings: By cloning and sequencing, 6 bacteria genera, including Acaryochloris, Adhaeribacter, Brachybacterium, Gloeocapsopsis, Cesiribacter, and Bacillus were identified. Archaeal library belonged to 5 genera, including Halonotius, Halolamina, Haloquadratum, Halomicroarcula, and Halorhabdus. The clone libraries of bacterial belonged to 4 phyla, including Bacteroidetes, Cyanobacteria, Actinobacteria, and Firmicutes. . The clone libraries of bop gene (as a molecular marker) belonged to genera, including Halorubrum, Natrialba, Haloquadratum, and Natrinema. The bop phylogeny was closely related to the 16S rDNA phylogeny.
Conclusion: By cloning and sequencing, 6 bacteria genera, including Acaryochloris, Adhaeribacter, Brachybacterium, Gloeocapsopsis, Cesiribacter, and Bacillus were identified. The bop phylogeny is closely related to the 16S rDNA phylogeny.
Full-Text [PDF 1004 kb]   (3311 Downloads)    
Subject: Agricultural Biotechnology
Received: 2017/04/9 | Accepted: 2017/10/22 | Published: 1991/03/20

1. Colwell RR, Grimes DJ. Semantic and Strategies. In: Colwell RR, editor. Nonculturable microorganisms in the environment. Berlin: Springer Science and Business Media Press; 2012. pp. 1-7. [Link]
2. Hugenholtz P. Exploring prokaryotic diversity in the genomic era. Genome Biol. 2002;3(2):reviews0003.1-reviews0003.8. [Link]
3. Von Wintzingerode F, Gobel UB, Stackebrandt E. Determination of microbial diversity in environmental samples: Pitfalls of PCR-based rRNA analysis. FEMS Microbiol Rev. 1997;21(3):213-29. [Link] [DOI:10.1111/j.1574-6976.1997.tb00351.x]
4. Vaz-Moreira I, Egas C, Nunes OC, Manaia CM. Culture-dependent and culture-independent diversity surveys target different bacteria: A case study in a freshwater sample. Antonie Van Leeuwenhoek. 2011;100(2):245-57. [Link] [DOI:10.1007/s10482-011-9583-0]
5. Rastogi G, Sani RK. Molecular Techniques to assess microbial community structure, function and dynamics in the environment. In: Ahmad I, Ahmad F, Pichtel J, editors. Microbes and microbial technology. New York: Springer; 2011. pp. 7931-5. [Link] [DOI:10.1007/978-1-4419-7931-5_2]
6. Papke RT, Douady CJ, Doolittle WF, Rodríguez-Valera F. Diversity of bacteriorhodopsins in different hypersaline waters from a single Spanish saltern. Environ Microbiol. 2003;5(11):1039-45. [Link] [DOI:10.1046/j.1462-2920.2003.00501.x]
7. Pasić L, Bartual SG, Ulrih NP, Grabnar M, Velikonja BH. Diversity of halophilic archaea in the crystallizers of an Adriatic solar saltern. FEMS Microbiol Ecol. 2005;54(3):491-8. [Link] [DOI:10.1016/j.femsec.2005.06.004]
8. Shand RF, Betlach MC. Bop gene cluster expression in bacteriorhodopsin-overproducing mutants of halobacterium halobium. J Bacreriol. 1994;176(6):1655-60. [Link] [DOI:10.1128/jb.176.6.1655-1660.1994]
9. Benlloch S, Acinas SG, Antón J, López-López A, Luz SP, Rodríguez-Valera F. Archaeal biodiversity in crystallizer ponds from a solar saltern: Culture versus PCR. Microb Ecol. 2001;41(1):12-19. [Link]
10. DeLong EF. Archaea in coastal marine environments. Proc Natl Acad Sci USA. 1992;89(12):5685-9. [Link] [DOI:10.1073/pnas.89.12.5685]
11. Lane DJ, Pace B, Olsen GJ, Stahl DA, Sogin ML, Pace NR. Rapid determination of 16S ribosomal RNA sequences for phylogenetic analyses. Proc Natl Acad Sci USA. 1985;82(20):6955-9. [Link] [DOI:10.1073/pnas.82.20.6955]
12. Turner S, Pryer KM, Miao VP, Palmer JD. Investigating deep phylogenetic relationships among cyanobacteria and plastids by small subunit rRNA sequence analysis. J Eukaryot Microbiol. 1999;46(4):327-38. [Link] [DOI:10.1111/j.1550-7408.1999.tb04612.x]
13. Larkin MA1, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, et al. Clustal W and Clustal X version 2.0. Bioinformatics. 2007;23(21):2947-8. [Link] [DOI:10.1093/bioinformatics/btm404]
14. Hall TA. BioEdit: A user-friendly biological sequence alignment editor andanalysis program for Windows 95/98/NT. Nucleic Acids Symposium Series. 1999;41:95-8. [Link]
15. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: Molecular evolutionary genetics analysis version 6.0. Mol Biol Evol. 2013;30(12):2725-9. [Link] [DOI:10.1093/molbev/mst197]
16. Felsenstein J. Confidence limits on phylogenies: An approach using bootstrap. Evolution. 1985;39(4):783-91. https://doi.org/10.2307/2408678 [Link] [DOI:10.1111/j.1558-5646.1985.tb00420.x]
17. Pham VH, Kim J. Cultivation of unculturable soil bacteria. Trends Biotechnol. 2012;30(9):475-84. [Link] [DOI:10.1016/j.tibtech.2012.05.007]
18. Kaeberlein T, Lewis K, Epstein SS. Isolating "uncultivable" microorganisms in pure culture in a simulated natural environment. Science. 2002;296(5570):1127-9. [Link] [DOI:10.1126/science.1070633]
19. Vreeland RH, editor. Advances in understanding the biology of halophilic microorganisms. New York: Springer; 2012. 1-33. [Link] [DOI:10.1007/978-94-007-5539-0]
20. Mehrshad M, Amoozegar MA, Yakhchali B, Shahzedeh Fazeli A. Biodiversity of moderately halophilic and halotolerant bacteria in the western coastal line of Urmia lake. 2012;1(2):49-70. [Persian] [Link]
21. Asadi Asl B, Amouzegar MA. Study of variety of extreme aerobic halophyte prokaryotes on the west coast of Lake Uromieh using by dependent and independent cultivated methods. [Dissertation]. Tehran: University of Tehran; 2012. [Persian] [Link]
22. Makhdoumi-Kakhki A, Amoozegar MA, Kazemi B, Pašić L, Ventosa A. Prokaryotic diversity in Aran-Bidgol salt lake, the largest hypersaline playa in Iran. Microbes Environ. 2012;27(1):87-93. [Link] [DOI:10.1264/jsme2.ME11267]
23. 18-Alain K, Querellou J. Cultivating the uncultured: Limits, advances and future challenges. Extremophiles. 2009;13(4):583-94. [Link] [DOI:10.1007/s00792-009-0261-3]
24. Hughes JB, Hellmann JJ, Ricketts TH, Bohannan BJ. Counting the uncountable: Statistical approaches to estimating microbial diversity. Appl Environ Microbiol. 2001;67(10):4399-406. [Link] [DOI:10.1128/AEM.67.10.4399-4406.2001]

Add your comments about this article : Your username or Email:

Send email to the article author

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.