[1]. Bedrat, Amina et al. 2014. “Thioflavin T as a Fluorescence Light-up Probe for G4 Formation.” : 1–8.
[2]. Braun, Pascal, and Josh LaBaer. 2003. “High Throughput Protein Production for Functional Proteomics.” Trends in Biotechnology 21(9): 383–88. https://doi.org/10.1016/S0167-7799(03)00189-6.
[3]. Brazda, V, R C Laister, E B Jagelska, and C Arrowsmith. 2011. “Cruciform Structures Are a Common DNA Feature Important for Regulating Biological Processes.” BMC Mol Biol 12: 33. https://www.ncbi.nlm.nih.gov/pubmed/21816114.
[4]. Burgess, Richard. 2009. “Chapter 17 Refolding Solubilized Inclusion Body Proteins.” Methods in enzymology 463: 259–82.
[5]. Chisnall, B, C Johnson, Y Kulaberoglu, and Y W Chen. 2014. “Insoluble Protein Purification with Sarkosyl: Facts and Precautions.” Methods Mol Biol 1091: 179–86. https://www.ncbi.nlm.nih.gov/pubmed/24203332.
[6]. Cornacchia, D et al. 2012. “Mouse Rif1 Is a Key Regulator of the Replication-Timing Programme in Mammalian Cells.” EMBO J 31(18): 3678–90. https://www.ncbi.nlm.nih.gov/pubmed/22850673.
[7]. Fragkos, Michalis, Olivier Ganier, Philippe Coulombe, and Marcel Méchali. 2015. “DNA Replication Origin Activation in Space and Time.” Nature Reviews Molecular Cell Biology 16: 360. https://doi.org/10.1038/nrm4002.
[8]. Frankel, S, R Sohn, and L Leinwand. 1991. “The Use of Sarkosyl in Generating Soluble Protein after Bacterial Expression.” Proc Natl Acad Sci U S A 88(4): 1192–96. https://www.ncbi.nlm.nih.gov/pubmed/1705029.
[9]. Hardy, C F, L Sussel, and D Shore. 1992. “A RAP1-Interacting Protein Involved in Transcriptional Silencing and Telomere Length Regulation.” Genes Dev 6(5): 801–14. https://www.ncbi.nlm.nih.gov/pubmed/1577274.
[10]. Kanoh, Y et al. 2015. “Rif1 Binds to G Quadruplexes and Suppresses Replication over Long Distances.” Nat Struct Mol Biol 22(11): 889–97. https://www.ncbi.nlm.nih.gov/pubmed/26436827.
[11]. Kumar, Manu, Seong Ryong Kim, Prabodh Chander Sharma, and Ashwani Pareek. 2015. “Simple and Efficient Way to Detect Small Polymorphic Bands in Plants.” Genomics Data 5: 218–22. http://www.sciencedirect.com/science/article/pii/S2213596015001075.
[12]. Lewin, B. 2014. Lewin’s GENES XI. Jones & Bartlett Publishers.
[13]. Li, F et al. 2001. “The Replication Timing Program of the Chinese Hamster Beta-Globin Locus Is Established Coincident with Its Repositioning near Peripheral Heterochromatin in Early G1 Phase.” J Cell Biol 154(2): 283–92. https://www.ncbi.nlm.nih.gov/pubmed/11470818.
[14]. Lilie, Hauke, Elisabeth Schwarz, and Rainer Rudolph. 1998. “Advances in Refolding of Proteins Produced in E. Coli.” Current Opinion in Biotechnology 9(5): 497–501. http://www.sciencedirect.com/science/article/pii/S0958166998800359.
[15]. Masai, H et al. 2010. “Eukaryotic Chromosome DNA Replication: Where, When, and How?” Annu Rev Biochem 79: 89–130. https://www.ncbi.nlm.nih.gov/pubmed/20373915.
[16]. ———. 2018. “Telomere-Binding Factors in the Regulation of DNA Replication.” Genes Genet Syst 92(3): 119–25. https://www.ncbi.nlm.nih.gov/pubmed/28674277.
[17]. Masai, Hisao et al. 2019. “Rif1 Promotes Association of G-Quadruplex (G4) by Its Specific G4 Binding and Oligomerization Activities.” Scientific Reports 9(1): 8618. https://doi.org/10.1038/s41598-019-44736-9.
[18]. Massiah, M.A., Wright, K.M., and Du, H. 2016. “Obtaining Soluble Folded Proteins from Inclusion Bodies Using Sarkosyl, Triton X-100, and CHAPS.” In Application to LB and M9 Minimal Media., Curr. Protoc. Protein Sci., 1–6.
[19]. Massiah, Michael A, Katharine M Wright, and Haijuan Du. 2016. “Obtaining Soluble Folded Proteins from Inclusion Bodies Using Sarkosyl , Triton X-100 , and CHAPS : Application to LB and M9 Minimal Media.” : 1–24.
[20]. Mishra, Subodh Kumar et al. 2019. “Characterization of Highly Conserved G-Quadruplex Motifs as Potential Drug Targets in Streptococcus Pneumoniae.” Scientific Reports 9(1): 1791. https://doi.org/10.1038/s41598-018-38400-x.
[21]. Moriyama, K, N Yoshizawa-Sugata, and H Masai. 2018. “Oligomer Formation and G-Quadruplex Binding by Purified Murine Rif1 Protein, a Key Organizer of Higher-Order Chromatin Architecture.” J Biol Chem 293(10): 3607–24. https://www.ncbi.nlm.nih.gov/pubmed/29348174.
[22]. Pullara, F et al. 2013. “A General Path for Large-Scale Solubilization of Cellular Proteins: From Membrane Receptors to Multiprotein Complexes.” Protein Expr Purif 87(2): 111–19. https://www.ncbi.nlm.nih.gov/pubmed/23137940.
[23]. Renaud de la Faverie, A et al. 2014. “Thioflavin T as a Fluorescence Light-up Probe for G4 Formation.” Nucleic Acids Res 42(8): e65. https://www.ncbi.nlm.nih.gov/pubmed/24510097.
[24]. Rosano, Germán L, and Eduardo A Ceccarelli. 2014. “Recombinant Protein Expression in Escherichia Coli: Advances and Challenges.” Frontiers in microbiology 5: 172. https://www.ncbi.nlm.nih.gov/pubmed/24860555.
[25]. Shi, Tianlai et al. 2013. “Rif1 and Rif2 Shape Telomere Function and Architecture through Multivalent Rap1 Interactions.”
[26]. Sreesankar, E et al. 2012. “Functional Diversification of Yeast Telomere Associated Protein, Rif1, in Higher Eukaryotes.” BMC Genomics 13: 255. https://www.ncbi.nlm.nih.gov/pubmed/22712556.
[27]. Sukackaite, R et al. 2014. “Structural and Biophysical Characterization of Murine Rif1 C Terminus Reveals High Specificity for DNA Cruciform Structures.” J Biol Chem 289(20): 13903–11. https://www.ncbi.nlm.nih.gov/pubmed/24634216.
[28]. Tao, Hu et al. 2010. “Benchmarks Purifying Natively Folded Proteins.” : 61–63.
[29]. Xu, D et al. 2010. “Rif1 Provides a New DNA-Binding Interface for the Bloom Syndrome Complex to Maintain Normal Replication.” EMBO J 29(18): 3140–55. https://www.ncbi.nlm.nih.gov/pubmed/20711169.
[30]. Yamazaki, S, M Hayano, and H Masai. 2013. “Replication Timing Regulation of Eukaryotic Replicons: Rif1 as a Global Regulator of Replication Timing.” Trends Genet 29(8): 449–60. https://www.ncbi.nlm.nih.gov/pubmed/23809990.