Interaction of cadmium telluride semiconductor nanoparticles on egg white lysozyme using spectroscopic methods and enzymatic kinetics

Document Type : Original Research

Authors

1 Assistant Professor, Department of Biology, Faculty of Science, Shahrekord University, Shahrekord

2 Assistant Professor, Department of Biology, Faculty of Science, Payam Noor University

3 Professor, Department of Biology, Faculty of Science, Shahrekord University, Shahrekord

Abstract
In this article, the interaction between lysozyme and CdTe nanoparticles was investigated by UV-Vis spectroscopy, fluorescence, thermal stability, kinetics, and circular dichroism (CD) spectroscopic methods at pH 7.25. It was proved that the fluorescence quenching of lysozyme by CdTe NPs was mainly a result of the formation of the CdTe–lysozyme complex. By the fluorescence quenching results, the Stern–Volmer quenching constant (KSV), binding constant (Ka), and binding sites (n) were calculated. Under pH 7.25 conditions, the level of binding constant is determined to be 2.33×103 from fluorescence data. The hydrogen bond or van der Waals force is involved in the binding process. The blue shift of the fluorescence spectral peak of protein after the addition of CdTe nanoparticles reveals that the microenvironments around tryptophan residues are disturbed by CdTe nanoparticles. The effect of CdTe NPs on the conformation of lysozyme has been analyzed by means of UV-Vis spectra and CD spectra, which provided evidence that the secondary structure of lysozyme has been changed by the interaction of CdTe NPs with lysozyme.

Keywords

Subjects


[1] K. Hund-Rinke, M. Simon. (2006) Ecotoxic effect of photocatalytic active nanoparticles (TiO2) on algae and daphnids. Environmental Science and Pollution Research. 13, 225-232.
[2] V. Stone, H. Johnston, M.J. Clift. (2007) Air pollution, ultrafine and nanoparticle toxicology: cellular and molecular interactions, NanoBioscience, IEEE Transactions on. 6, 331-340.
[3] J.J. Wang, B.J. Sanderson, H. Wang. (2007) Cyto-and genotoxicity of ultrafine TiO 2 particles in cultured human lymphoblastoid cells. Mutation Research/Genetic Toxicology and Environmental Mutagenesis. 628 99-106.
[4] S.B. Lovern, J.R. Strickler, R. Klaper. (2007) Behavioral and physiological changes in Daphnia magna when exposed to nanoparticle suspensions (titanium dioxide, nano-C60, and C60HxC70Hx). Environmental science & technology. 41, 4465-4470.
[5] N. Lu, Z. Zhu, X. Zhao, R. Tao, X. Yang, Z. Gao. (2008) Nano titanium dioxide photocatalytic protein tyrosine nitration: a potential hazard of TiO 2 on skin. Biochemical and biophysical research communications. 370, 675-680.
[6] X.-H. Chen, L. Zhang, Y.-X. Weng, L.-C. Du, M.-P. Ye, G.-Z. Yang, R. Fujii, F.S. Rondonuwu, Y. Koyama, Y.-S. Wu. (2005) Protein structural deformation induced lifetime shortening of photosynthetic bacteria light-harvesting complex LH2 excited state. Biophysical journal. 88, 4262-4273.
[7] M. Heinlaan, A. Ivask, I. Blinova, H.-C. Dubourguier, A. Kahru. (2008) Toxicity of nanosized and bulk ZnO, CuO and TiO 2 to bacteria Vibrio fischeri and crustaceans Daphnia magna and Thamnocephalus platyurus. Chemosphere. 71, 1308-1316.
[8] A. Rogach, N. Kotov, D. Koktysh, J. Ostrander, G. Ragoisha. (2000) Electrophoretic deposition of latex-based 3D colloidal photonic crystals: A technique for rapid production of high-quality opals. Chemistry of Materials. 12, 2721-2726.
[9] A.A. Mamedov, A. Belov, M. Giersig, N.N. Mamedova, N.A. Kotov. (2001) Nanorainbows: graded semiconductor films from quantum dots, Journal of the American Chemical Society. 123, 7738-7739.
[10] W.C. Chan, S. Nie. (1998) Quantum dot bioconjugates for ultrasensitive nonisotopic detection. Science. 281 2016-2018.
[11] M. Bruchez, M. Moronne, P. Gin, S. Weiss, A.P. Alivisatos. (1998) Semiconductor nanocrystals as fluorescent biological labels, science. 281, 2013-2016.
[12] H. Mattoussi, J. Mauro, E. Goldman, T. Green, G. Anderson, V. Sundar, M. Bawendi. (2001) Bioconjugation of highly luminescent colloidal CdSe–ZnS quantum dots with an engineered two‐domain recombinant protein, physica status solidi (b), 224, 277-283.
[13] M. Han, X. Gao, J.Z. Su, S. Nie. (2001) Quantum-dot-tagged microbeads for multiplexed optical coding of biomolecules, Nature biotechnology. 19, 631-635.
[14] Y.L. Wu, F. He, X.W. He, W.Y. Li, Y.K. Zhang. (2008) Spectroscopic studies on the interaction between CdTe nanoparticles and lysozyme, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. (2008) 71 1199-1203.
[15] A. Schmid, J. Dordick, B. Hauer, A. Kiener, M. Wubbolts, B. Witholt. (2001) Industrial biocatalysis today and tomorrow, Nature, 409, 258-268.
[16] E. Katz, I. Willner. (2004) Integrated nanoparticle–biomolecule hybrid systems: synthesis, properties, and applications. Angewandte Chemie International Edition. 43, 6042-6108.
[17] H. Van Dael. (1998) Chimeras of human lysozyme and α-lactalbumin: an interesting tool for studying partially folded states during protein folding, Cellular and Molecular Life Sciences CMLS. 54 1217-1230.
[18] Z. Gu, X. Zhu, S. Ni, Z. Su, H.-M. Zhou. (2004) Conformational changes of lysozyme refolding intermediates and implications for aggregation and renaturation. The international journal of biochemistry & cell biology. 36, 795-805.
[19] F. Yang, Y. Liang, F. Yang. (2003) Unfolding of lysozyme induced by urea and guanidine hydrochloride studied by" phase diagram" method of fluorescence. ACTA CHIMICA SINICA-CHINESE EDITION-. 61, 803-807.
[20] J. Tang, F. Luan, X. Chen. (2006) Binding analysis of glycyrrhetinic acid to human serum albumin: fluorescence spectroscopy, FTIR, and molecular modeling. Bioorganic & medicinal chemistry. 14, 3210-3217.
[21] C. Dufour, O. Dangles. (2005) Flavonoid-serum albumin complexation: determination of binding constants and binding sites by fluorescence spectroscopy. Biochimica et Biophysica Acta (BBA)-General Subjects. 1721, 164-173.
[22] M. Salavati-Niasari, M. Bazarganipour, M. Ghasemi-Kooch. (2015) Facile Sonochemical Synthesis and Characterization of CdTe Nanoparticles, Synthesis and Reactivity in Inorganic. Metal-Organic, and Nano-Metal Chemistry. 45, 1558-1564.
[23] H. Sun, E. Cui, Z. Tan, R. Liu. (2014) Effects of N‐Acetyl‐L‐Cysteine‐Capped CdTe Quantum Dots on Bovine Serum Albumin and Bovine Hemoglobin: Isothermal Titration Calorimetry and Spectroscopic Investigations. Journal of biochemical and molecular toxicology. 28, 549-557.
[24] Y. Li, X. Zhang, C. Deng. Functionalized magnetic nanoparticles for sample preparation in proteomics and peptidomics analysis. Chemical Society Reviews. 42, (2013) 8517-8539.
[25] J.M. Ruso, A. González-Pérez, G. Prieto, F. Sarmiento. (2003) Study of the interactions between lysozyme and a fully-fluorinated surfactant in aqueous solution at different surfactant–protein ratios. International journal of biological macromolecules. 33, 67-73.
[26] B. Yang, R. Liu, X. Hao, Y. Wu, J. Du. (2012) The interactions of glutathione-capped CdTe quantum dots with trypsin. Biological trace element research. 146, 396-401.
[27] A. Saboury, A. Moosavi‐Movahedi. (1995) Derivation of the thermodynamic parameters involved in the elucidation of protein thermal profiles. Biochemical education. 23, 164-167.
[28] H.N. Ong, B. Arumugam, S. Tayyab. (2009) Succinylation-induced conformational destabilization of lysozyme as studied by guanidine hydrochloride denaturation. Journal of biochemistry. 146, 895-904.
[29] A. Saboury, F. Karbassi. (2000) Thermodynamic studies on the interaction of calcium ions with alpha-amylase. Thermochimica acta. 362, 121-129.
[30] P. Venkatesu, M.-J. Lee, H.-m. Lin. (2007) Thermodynamic characterization of the osmolyte effect on protein stability and the effect of GdnHCl on the protein denatured state. The Journal of Physical Chemistry B. 111, 9045-9056.
[31] L. Momeni, B. Shareghi, S. Farhadian, F. Raisi. (2019) Making bovine trypsin more stable and active by Erythritol: A multispectroscopic analysis. docking and computational simulation methods. Journal of Molecular Liquids.292, 111389.
[32] R.R. Zhu, S.L. Wang, R. Zhang, X.Y. Sun, S.D. Yao. (2007) A novel toxicological evaluation of TiO2 nanoparticles on DNA structure. Chinese Journal of Chemistry. 25, 958-961.
[33] G.R. Behbehani, A. Divsalar, A. Saboury, A. Hekmat. (2009) A thermodynamic study on the binding of PEG-stearic acid copolymer with lysozyme. Journal of solution chemistry. 38, 219-229.
[34] T. Imoto, L.S. Forster, J. Rupley, F. Tanaka, (1972) Fluorescence of lysozyme: emissions from tryptophan residues 62 and 108 and energy migration. Proceedings of the National Academy of Sciences. 69, 1151-1155.
[35] T. Yamamoto, T. Kobayashi, K. Yoshikiyo, Y. Matsui, T. Takahashi, Y. Aso. (2009) A 1 H NMR spectroscopic study on the tryptophan residues of lysozyme included by glucosyl-β-cyclodextrin. Journal of Molecular Structure. 920, 264-269.
[36] Q. Yue, L. Niu, X. Li, X. Shao, X. Xie, Z. Song. (2008) Study on the interaction mechanism of lysozyme and bromophenol blue by fluorescence spectroscopy. Journal of fluorescence. 18, 11-15.
[37] Z.-D. Qi, B. Zhou, X. Qi, S. Chuan, Y. Liu, J. Dai. (2008) Interaction of rofecoxib with human serum albumin: determination of binding constants and the binding site by spectroscopic methods. Journal of Photochemistry and Photobiology A: Chemistry. 193, 81-88.
[38] M.-F. Zhang, Z.-Q. Xu, Y.-S. Ge, F.-L. Jiang, Y. Liu. (2012) Binding of fullerol to human serum albumin: spectroscopic and electrochemical approach. Journal of Photochemistry and Photobiology B: Biology. 108, 34-43.
[39] J.R. Lakowicz, G. Weber. (1973) Quenching of fluorescence by oxygen. Probe for structural fluctuations in macromolecules. Biochemistry. 12, 4161-4170.
[40] J. Min, X. Meng-Xia, Z. Dong, L. Yuan, L. Xiao-Yu, C. Xing. (2004) Spectroscopic studies on the interaction of cinnamic acid and its hydroxyl derivatives with human serum albumin. Journal of Molecular Structure. 692, 71-80.
[41] B. Ghalandari, A. Divsalar, A.A. Saboury, K. Parivar. (2015) β-Lactoglobulin nanoparticle as a chemotherapy agent carrier for oral drug delivery system. Journal of the Iranian Chemical Society. 12, 613-619.
[42] M. Saeidifar, H. Mansouri-Torshizi, A.A. Saboury. (2015) Biophysical study on the interaction between two palladium (II) complexes and human serum albumin by Multispectroscopic methods. Journal of Luminescence. 167, 391-398.
[43] B. Delavari, A.A. Saboury, M.S. Atri, A. Ghasemi, B. Bigdeli, A. Khammari, P. Maghami, A.A. Moosavi-Movahedi, T. Haertlé, B. Goliaei. (2015) Alpha-lactalbumin: A new carrier for vitamin D 3 food enrichment. Food Hydrocolloids. 45, 124-131.
[44] L. Momeni, B. Shareghi, A.A. Saboury, S. Farhadian, F. Reisi. (2017) A spectroscopic and thermal stability study on the interaction between putrescine and bovine trypsin, International journal of biological macromolecules. 94, 145-153.
[45] L. Momeni, B. Shareghi, A.A. Saboury, S. Farhadian. (2016) The effect of spermine on the structure, thermal stability and activity of bovine pancreatic trypsin. RSC advances. 6, 60633-60642.
[46] S. Tabassum, W.M. Al-Asbahy, M. Afzal, F. Arjmand, Synthesis. (2012) characterization and interaction studies of copper based drug with human serum albumin (HSA): spectroscopic and molecular docking investigations. Journal of Photochemistry and Photobiology B: Biology. 114, 132-139.
[47] A.S. Roy, P. Ghosh. (2016) Characterization of the binding of flavanone hesperetin with chicken egg lysozyme using spectroscopic techniques: effect of pH on the binding. Journal of Inclusion Phenomena and Macrocyclic Chemistry. 84, 21-34.
[48] B. Ghalandari, A. Divsalar, M. Eslami-Moghadam, A.A. Saboury, T. Haertlé, M. Amanlou, K. Parivar. (2015) Probing of the interaction between β-lactoglobulin and the anticancer drug oxaliplatin. Applied biochemistry and biotechnology. 175, 974-987.
[49] G. Vignesh, Y. Manojkumar, K. Sugumar, S. Arunachalam. (2015) Spectroscopic investigation on the interaction of some polymer–cobalt (III) complexes with serum albumins. Journal of Luminescence. 157, 297-302.
[50] B. Ghalandari, A. Divsalar, A.A. Saboury, T. Haertlé, K. Parivar, R. Bazl, M. Eslami-Moghadam, M. Amanlou. (2014) Spectroscopic and theoretical investigation of oxali–palladium interactions with β-lactoglobulin. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. 118, 1038-1046.
[51] P.D. Ross, S. Subramanian. (1981) Thermodynamics of protein association reactions: forces contributing to stability.Biochemistry.20, 3096-3102.
[52] A. Bonincontro, G. Onori. (2004) Investigation by dielectric spectroscopy of domain motions in lysozyme: effect of solvent and binding of inhibitors. Chemical physics letters. 398, 260-263.
[53] M. Moradi, A. Divsalar, A. Saboury, B. Ghalandari, A. Harifi. (2015) Inhibitory effects of deferasirox on the structure and function of bovine liver catalase: a spectroscopic and theoretical study. Journal of Biomolecular Structure and Dynamics. 33, 2255-2266.
[54] Y. Yue, X. Chen, J. Qin, X. Yao. (2009) Spectroscopic investigation on the binding of antineoplastic drug oxaliplatin to human serum albumin and molecular modeling. Colloids and Surfaces B: Biointerfaces. 69, 51-57.
[55] P. Jollès, J. Jollès. (1984) What's new in lysozyme research?, Molecular and cellular biochemistry. 63, 165-189.
[56] T. Peeters, G. Vantrappen. (1975) The Paneth cell: a source of intestinal lysozyme. Gut. 16, 553-558.
[57] D. Mason, C. Taylor. (1975) The distribution of muramidase (lysozyme) in human tissues. Journal of clinical pathology. 28, 124-132.